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Abstract When reasoning qualitatively from a conditional

knowledge base, two established approaches are system Z

and p-entailment. The latter infers skeptically over all

ranking models of the knowledge base, while system Z

uses the unique pareto-minimal ranking model for the

inference relations. Between these two extremes of using

all or just one ranking model, the approach of c-represen-

tations generates a subset of all ranking models with certain

constraints. Recent work shows that skeptical inference

over all c-representations of a knowledge base includes and

extends p-entailment. In this paper, we follow the idea of

using preferred models of the knowledge base instead of

the set of all models as a base for the inference relation. We

employ different minimality constraints for c-representa-

tions and demonstrate inference relations from sets of

preferred c-representations with respect to these con-

straints. We present a practical tool for automatic c-infer-

ence that is based on a high-level, declarative constraint-

logic programming approach. Using our implementation,

we illustrate that different minimality constraints lead to

inference relations that differ mutually as well as from

system Z and p-entailment.

Keywords Conditional logic � Qualitative conditional �
Default rule � Ranking function � C-representation � C-

inference � System Z � P-entailment

1 Introduction

In the area of knowledge representation and reasoning,

rules play a prominent role, especially default rules of the

form ‘‘If A then usually/normally/preferably B’’. Sets of

such rules, so called knowledge bases, are used to represent

the knowledge of a reasoning agent, and the inference

relation of the agent depends on this knowledge. A

knowledge base usually is incomplete to such an extent that

it contains all conditional rules relevant to the agent, but it

usually does not contain enough information to represent

all preferences, beliefs, and assumptions of the agent, that

is, an epistemic state in the sense of [11]. Here, inductive

methods come into play that construct a model of the

knowledge base. Such models can be representations from

various formalisms, encoding, for instance, the probability

[20], the (im-)possibility [8], or the (im-)plausibility

[22, 23] of the possible worlds. Based on these models that

inductively complete the knowledge given explicitly by the

rules of a knowledge base, corresponding inductive infer-

ence relations can be constructed.

In this paper, we focus on models based on plausibility

as defined by Ordinal Conditional Functions [22, 23] (OCF,

also known as ranking functions). Established approaches

of inductive inference using OCF include the skeptical

inference over all ranking models of a knowledge base,

known as p-entailment [9], and the inference with the
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unique, with respect to ranks of worlds, pareto-minimal

OCF with this property, known as System Z [21].

In [12, 13] a criterion when a ranking function respects

the conditional structure of a set R of conditionals is

defined, leading to the notion of c-representation for R, and

it is argued that ranking functions defined by c-represen-

tations are of particular interest for model-based inference.

It has been shown that reasoning inductively with a single

c-representation yields an inference relation of high quality

(cf., e.g., [14, 24]). Recent work also shows that the

skeptical inference over all c-representations (called c-in-

ference) includes and extends p-entailment [2]. To define

the inference relation, in this paper, we follow the idea of

[18] as well as [21] by using a set of preferred models of

the knowledge base R instead of using of the set of all

models. We employ different minimality constraints for

c-representations and demonstrate inference relations from

sets of preferred c-representations with respect to these

constraints.

The main objective of this paper is to present and

illustrate these inference relations and to provide a prac-

tical tool for automatic inference and for comparison of

the inference results. For this tool, we employ the

observation that the definition of c-representations as

solutions of a constraint satisfaction problem CRðRÞ (see

[2, 4]) allows to implement c-representations in a high-

level, declarative approach using constraint logic pro-

gramming techniques. In particular, this approach also

supports the generation of all minimal solutions, provid-

ing a preferred basis for model-based inference from R;

previously, no other implementation of minimal c-infer-

ence has been available.

This article is a revised and largely extended version of

[4]. In particular, in this paper we add the comparison to

system Z and to p-entailment, extend and refine the notions

of minimality, introduce corresponding inferences rela-

tions, and present a newly developed implementation for

computing and comparing different inference relations.

The rest of this paper is organized as follows: After

recalling the formal background of conditional logics as far

as it is needed here (Sect. 2), we elaborate an illustration

for a conditional knowledge base and discuss resulting

inference relations based on OCFs in Sect. 3. In Sect. 4, we

recall the inductive approaches of System Z and c-repre-

sentations and present the constraint satisfaction problem

CRðRÞ whose solutions are computed by the declarative,

high-level CLP program GenOCF (Sect. 5). Section 6

introduces three different notions of minimality for c-rep-

resentations, and, in Sect. 7, an implementation of the

corresponding inference relations based on GenOCF is

presented. Section 8 concludes the paper and points out

further work.

2 Background

We start with a propositional language L, generated by a

finite set R of atoms a; b; c; . . .. The formulas of L will be

denoted by uppercase Roman letters A;B;C; . . .. For con-

ciseness of notation, we will omit the logical and-con-

nective, writing AB instead of A ^ B, and overlining

formulas will indicate negation, i.e. A means :A. Let X
denote the set of possible worlds over L; X will be taken

here simply as the set of all propositional interpretations

over L and can be identified with the set of all complete

conjunctions over R. For x 2 X, x � A means that the

propositional formula A 2 L holds in the possible world x.

By introducing a new binary operator |, we obtain the set

ðL j LÞ ¼ fðBjAÞ j A;B 2 Lg of conditionals over L.

ðBjAÞ formalizes the conditional rule ‘‘if A then (normally)

B’’ and establishes a plausible, probable, possible etc.

connection between the antecedent A and the consequence

B. Here, conditionals are supposed not to be nested, that is,

antecedent and consequent of a conditional will be

propositional formulas.

A conditional ðBjAÞ is an object of a three-valued nat-

ure, partitioning the set of worlds X in three parts: those

worlds satisfying AB, thus verifying the conditional, those

worlds satisfying AB, thus falsifying the conditional, and

those worlds not fulfilling the premise A and so which the

conditional may not be applied to at all. This allows us to

represent ðBjAÞ as a generalized indicator function going

back to [7] (where u stands for unknown or indeterminate):

ðBjAÞðxÞ ¼
1 if x � AB

0 if x � AB

u if x � A

8
><

>:
ð1Þ

To give appropriate semantics to conditionals, they are

usually considered within richer structures such as epis-

temic states [11]. Besides certain (logical) knowledge,

epistemic states also allow the representation of prefer-

ences, beliefs, assumptions of an intelligent agent. Basi-

cally, an epistemic state allows one to compare formulas or

worlds with respect to plausibility, possibility, necessity,

probability, etc.

Well-known qualitative, ordinal approaches to represent

epistemic states are Spohn’s ordinal conditional functions,

OCFs, (also called ranking functions) [22], and possibility

distributions [6], assigning degrees of plausibility, or of

possibility, respectively, to formulas and possible worlds.

In such qualitative frameworks, a conditional (B|A) is valid

(or accepted), if its confirmation, AB, is more plausible,

possible, etc. than its refutation, AB; a suitable degree of

acceptance is calculated from the degrees associated with

AB and AB.
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In this paper, we consider Spohn’s OCFs [22]. An OCF

is a function

j : X ! N0

expressing degrees of plausibility of propositional formulas

where a higher degree denotes ‘‘less plausible’’ or ‘‘more

suprising’’. At least one world must be regarded as being

normal (or maximally plausible or unsurprising); therefore,

jðxÞ ¼ 0 for at least onex 2 X. Each OCF can be taken as the

representation of a full epistemic state of an agent. Each suchj
uniquely extends to a function (also denoted by j) mapping

sentences and rules to N [ f1g and being defined by

jðAÞ ¼
minfjðxÞ j x � Ag if A is satisfiable

1 otherwise

�

ð2Þ

for sentences A 2 L and by

jððBjAÞÞ ¼
jðABÞ � jðAÞ if jðAÞ 6¼ 1
1 otherwise

�

ð3Þ

for conditionals ðBjAÞ 2 ðL j LÞ. Note that jððBjAÞÞ > 0

since any x satisfying AB also satisfies A and therefore

jðABÞ > jðAÞ.
The belief of an agent being in epistemic state j with

respect to a default rule ðBjAÞ is determined by the satis-

faction relation �O defined by:

j�O ðBjAÞ iff jðABÞ\jðABÞ ð4Þ

Thus, ðBjAÞ is believed in j iff the rank of AB (verifying

the conditional) is strictly smaller than the rank of AB

(falsifying the conditional). We say that j accepts the

conditional ðBjAÞ iff j�O ðBjAÞ.
We call a conditional ðBjAÞ with A � B self-fulfilling

since it can not be falsified by any world. Obviously, such

conditionals are meaningless from a modeling point of

view, and we will not consider them in the following. A set

R � ðLjLÞ of conditionals is called a knowledge base if it

does not contain any self-fulfilling conditional. An OCF j
accepts a knowledge base if and only if j accepts all

conditionals in R; such an OCF is called a (ranking) model

of R. A knowledge base R is consistent iff a ranking

model of R exists [21].

3 Inference and the Drowning Problem

In order to illustrate the concepts presented in the previous

section, we will use a scenario involving a set of some

default rules representing common-sense knowledge.

Example 1 (Rpen) Suppose we have the propositional

atoms: f—flying, b—birds, p—penguins, w—winged

animals, k—kea. Let the set Rpen consist of the following

conditionals:

r1 : ðf jbÞ birds fly

r2 : ðbjpÞ penguins are birds

r3 : ðf jpÞ penguins do not fly

r4 : ðwjbÞ birds have wings

r5 : ðbjkÞ kea are birds

Table 1 shows two ranking functions j and jZRpen
that

accept all conditionals given in Rpen. Thus, for any i 2
f1; 2; 3; 4; 5g it holds that j�O ri and jZRpen

�O ri.

For the conditional ðf jpÞ (‘‘Do penguins fly?’’) that is not

contained in Rpen, we get jðpf Þ ¼ jZRpen
ðpf Þ ¼ 2 and

jðpf Þ ¼ jZRpen
ðpf Þ ¼ 1 and therefore

j �O= ðf jpÞ and jZRpen
�O= ðf jpÞ

so that the conditional ðf jpÞ is neither accepted by j nor by

jZRpen
. This is in accordance with the behavior of a rational

agent believing Rpen since the knowledge base Rpen used

for building up j explicitly contains the opposite rule ðf jpÞ.
On the other hand, for the conditional ðwjkÞ (‘‘Do kea

have wings?’’) that is also not contained in Rpen, we get

jðkwÞ ¼ jZRpen
ðkwÞ ¼ 0 and jðkwÞ ¼ jZRpen

ðkwÞ ¼ 1 and

therefore

Table 1 Two ranking functions j and jZRpen
ðxÞ accepting the rule set

Rpen given in Example 1

x jðxÞ jZRpen
ðxÞ x jðxÞ jZRpen

ðxÞ

pbfwk 2 2 pbfwk 0 0

pbfwk 2 2 pbfwk 0 0

pbfwk 3 2 pbfwk 1 1

pbfwk 3 2 pbfwk 1 1

pbfwk 1 1 pbfwk 1 1

pbfwk 1 1 pbfwk 1 1

pbfwk 2 1 pbfwk 2 1

pbfwk 2 1 pbfwk 2 1

pbfwk 5 2 pbfwk 1 1

pbfwk 4 2 pbfwk 0 0

pbfwk 5 2 pbfwk 1 1

pbfwk 4 2 pbfwk 0 0

pb fwk 3 2 pb fwk 1 1

pb fwk 2 2 pb fwk 0 0

pb fwk 3 2 pb fwk 1 1

pb fwk 2 2 pb fwk 0 0
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j�O ðwjkÞ and jZRpen
�O ðwjkÞ

i.e., the conditional ðwjkÞ is accepted by j and by jZRpen
.

Thus, from their superclass birds, kea inherit the property

of having wings.

For these conditionals, both OCFs show identical behavior.

But if we inspect the conditional ðwjpÞ (‘‘Do penguins have

wings?’’) we obtain jðpwÞ ¼ jZRpen
ðpwÞ ¼ jZRpen

ðpwÞ ¼ 1,

jðpwÞ ¼ 2, and therefore

j�O ðwjpÞ but jZRpen
�O= ðwjpÞ:

So reasoning with one model of Rpen yields that penguins

have wings, while reasoning with another does not (and

neither the opposite, since also jZRpen
�O= ðwjpÞ). This

particular case is known as the drowning problem [5]. The

knowledge base contains information about penguins being

special birds that differ from normal birds in their ability to

fly, that is, penguins are exceptional birds with respect to

the property of flying. The inference relation induced by j
treats penguins as regular birds with respect to every

property inherited from being birds, apart from their

explicitly stated (exceptional) inability to fly. The inference

relation induced by jZRpen
treats penguins as exceptional

with respect to every property of their superclass bird. So

the property of having wings is drowned and not inherited

from the superclass.

Any OCF j is a function that induces a total and tran-

sitive ordering 6j on X such that for each pair x;x0 2 X
we have x 6j x0 if and only if jðxÞ 6 jðx0Þ, with the

strict ordering defined in the usual way, i.e., x\jx0 if and

only if x 6j x0 and x0 66j x. The set of possible worlds X
is finite, so with classical satisfaction � we hence can

define a classical stoppered [18] (or smooth [15]) prefer-

ential model hX;�;\ji which, with [18], induces a pref-

erential entailment j� j as

A j� jB iff 8x0 � AB 9 x � AB s.t. x\jx
0: ð5Þ

This is equivalent [14] to defining the relation j� j by the

ranking entailment

A j� jB iff jðABÞ\jðABÞ iff j�O ðBjAÞ: ð6Þ

By definition, hX;�;\ji is a ranked model in the sense of

[17], so overall we obtain that j� j satisfies Adam’s Sys-

tem P [1] and Rational Monotony [17]; among others, [14]

further investigates the formal properties of such a ranking

entailment. Note that these properties are inherited by any

ranking entailment induced by an OCF j via (6), so

especially the ones obtained inductively from a conditional

knowledge base by means of system Z and c-representa-

tions as presented in the following section.

4 Inductive Reasoning

In Sect. 2 we recalled that a knowledge base is consistent if

and only if there is a ranking model j for the knowledge

base, and Sect. 3 illustrated how to reason with such

ranking models. This raises the question how to obtain such

a ranking model, if it exists. Also, for any consistent R
there may be many different j accepting R, each repre-

senting a complete set of beliefs with respect to every

possible formula A and every conditional ðBjAÞ which we

also illustrated in Sect. 3. Thus, every such j inductively

completes the knowledge given by R. In this section we

recall two established inductive approaches, System Z and

c-representations.

4.1 System Z

The approach of System Z [21] sets up a ranking model of

a knowledge base R by inclusion-maximal partitions of R
with respect to the notion of tolerance:

A set of conditionals R0 � ðLjLÞ tolerates a conditional

ðDjCÞ if and only if there is a world x 2 X that verifies

ðDjCÞ and does not falsify any conditional ðBjAÞ 2 R0, that

is, there is a world x 2 X such that

x � CD ^
^

ðBjAÞ2R0
ðA _ BÞ:

For each knowledge base R, Algorithm 1 [21] calculates

the unique inclusion-maximal ordered list hR0;R1; :::Rki
of partitions R ¼

Sk
i¼0 Ri, Ri \ Rj ¼ ; for each

0 6 i; j 6 k, i 6¼ j, such that each conditional in a partition

Ri is tolerated by the union
Sk

j¼i Rj.
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We define by Z : ðLjLÞ ! N0 the function that assigns

to each conditional ðBjAÞ 2 R the number i of the partition

such that ðBjAÞ 2 Ri. With this function the System Z

ranking function jZR is defined as [21]

jZRðxÞ

¼
0 iff x does not falsify any ðBjAÞ 2R
max

ðBjAÞ2R
fZððBjAÞÞjx�ABgþ1 otherwise.

(

ð7Þ

It has been shown that jZR �O R and that jZR is the unique,

with respect to ranks of worlds, pareto-minimal OCF with

this property [21].

Example 2 Algorithm 1 partitions the knowledge base

Rpen given in Example 1 in the sets

R0 ¼ fr1 : ðf jbÞ; r4 : ðwjbÞ; r5 : ðbjkÞg
R1 ¼ fr2 : ðbjpÞ; r3 : ðf jpÞg

and so (7) results in the OCF jZRpen
given in Table 1.

4.2 C-Representations

Based on an algebraic treatment of conditionals and the

idea of maximum entropy, the notion of conditional

indifference [13] of j with respect to R is defined and the

following criterion for conditional indifference is given:

An OCF j is indifferent with respect to R ¼
fðB1jA1Þ; . . .; ðBnjAnÞg iff jðAiÞ\1 for all i 2 f1; . . .; ng
and there are rational numbers g0; g

þ
i ; gi 2 Q; 1 6 i 6 n;

such that for all x 2 X,

jðxÞ ¼ g0 þ
X

16i6n
x�AiBi

gþi þ
X

16i6n

x�AiBi

gi: ð8Þ

The idea of conditional indifference is that the antecedence

Ai of each conditional is at least somewhat plausible and

that the plausibility of a world depends on impacts gþi ; gi
assigned to ðBijAiÞ in the following way: When starting

with an epistemic state of complete ignorance (i.e., each

world x has rank 0), for each rule ðBijAiÞ the values gþi ; gi
determine how the rank of each satisfying world and of

each falsifying world, respectively, should be changed:

• If the world x verifies the conditional ðBijAiÞ, – i.e.,

x � AiBi –, then gþi is used in the summation to

obtain the value jðxÞ.
• Likewise, if x falsifies the conditional ðBijAiÞ, – i.e.,

x � AiBi –, then gi is used in the summation instead.

• If the conditional ðBijAiÞ is not applicable in x, –

i.e., x � Ai –, then this conditional does not influence

the value jðxÞ.
The normalization constant g0 ensures that there is a

smallest world rank 0. Employing the postulate that the

ranks of a satisfying world should not be changed and

requiring that changing the rank of a falsifying world may

not result in an increase of the world’s plausibility leads to

the concept of a c-representation [12, 13]:

Definition 1 Let R ¼ fðB1jA1Þ; . . .; ðBnjAnÞg. Any rank-

ing function j satisfying the conditional indifference con-

dition (8) and gþi ¼ 0, gi > 0 (and thus also g0 ¼ 0 since R
is assumed to be consistent) as well as

jðAiBiÞ\jðAiBiÞ ð9Þ

for all i 2 f1; . . .; ng is called a (special) c-representation

of R.

Note that for i 2 f1; . . .; ng, condition (9) expresses that

j accepts the conditional Ri ¼ ðBijAiÞ 2 R (cf. the defini-

tion of the satisfaction relation in (4)) and that this also

implies jðAiÞ\1.

Thus, finding a c-representation for R amounts to

choosing appropriate values g1, ..., gn. In [4] this situation

is formulated as a constraint satisfaction problem CRðRÞ
whose solutions are vectors of the form ðg1; . . .; gnÞ
determining c-representations of R. The development of

CRðRÞ exploits (2) and (8) to reformulate (9) and requires

that the gi are natural numbers (and not just rational

numbers). In the following, we set minð;Þ ¼ 1.

Definition 2 (CRðRÞ [4]) The constraint satisfaction

problem for c-representations of a knowledge base

R ¼ fðB1jA1Þ; . . .; ðBnjAnÞg, denoted by CRðRÞ, is given

by the conjunction of the constraints

gi > 0 ð10Þ

gi [ min
x�AiBi

X

j 6¼i

x�AjBj

gj � min
x�AiBi

X

j 6¼i

x�AjBj

gj ð11Þ

for all i 2 f1; . . .; ng.

A solution of CRðRÞ is an n-tuple ðg1; . . .; gnÞ of natural

numbers, and with SolCRðRÞ we denote the set of all

solutions of CRðRÞ.

Proposition 1 (Correctness of CRðRÞ [2]) For R ¼
fðB1jA1Þ; . . .; ðBnjAnÞg let g~¼ ðg1; . . .; gnÞ 2 SolCRðRÞ.
Then the function j defined by

jðxÞ ¼
X

16i6n

x�AiBi

gi ð12Þ

in the following denoted by jg~, is an OCF that accepts R.

Example 3 We illustrate c-representations using the

alphabet R ¼ fp; b; fg and the knowledge base

R0
pen ¼ fr1 : ðf jbÞ; r2 : ðbjpÞ; r3 : ðf jpÞg

which is a proper subset of Rpen from Example 1. Using
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the verification/falsification behavior of the worlds over R
with respect to the conditionals in R0

pen given in Table 2,

the system of inequalities in CRðR0
penÞ according to (11) is:

g1 [ minfg3; 0g � minf0; 0g ¼ 0

g2 [ minfg3; g1g � minfg3; 0g ¼ minfg1; g3g
g3 [ minfg1; g2g � minfg2; 0g ¼ minfg1; g2g:

One solution for this system of inequalities and thus the

constraint satisfaction problem CRðR0
penÞ is the triple

(1, 2, 2). The ranking function induced by this solution

according to (12) is shown in Table 3.

Applying this method to the knowledge base Rpen

(Example 1), one solution of CRðRpenÞ is the quintuple

(1, 2, 2, 1, 1), and using this solution in (12) we obtain the

OCF j given in Table 1.

Note that each gi of a solution g~2 SolCRðRÞ defines the

impact of the conditional ðBijAiÞ, that is, how severe it is to

falsify the conditional. A solution g~partitions the conditionals

in sets of conditionals of equal impact. There are knowledge

bases where this partitioning does not coincide with the par-

titioning induced by system Z. The ranking function jg~ sums

up the impacts of falsified conditionals for each world which

results in a plausibility ranking between worlds s.t.

1. A world x that, ceteris paribus, falsifies less condi-

tionals of a partition than a world x0 is ranked to be

more plausible, i.e., jg~ðxÞ\jg~ðx0Þ, and

2. A world x that, ceteris paribus, falsifies a conditional

of a partition with a lower impact than a world x0 is

ranked to be more plausible, i.e., jg~ðxÞ\jg~ðx0Þ.
The following example illustrates the relationship of

c-representations to system Z and to the lexicographic

ordering of worlds as in [16].

Example 4 Let Rabcd ¼ fðcjaÞ; ðcjbÞ; ðcjdÞ; ðajdÞg. The

vector g~¼ ð1; 1; 2; 2Þ is a possible solution for the con-

straint satisfaction problem CRðRabcdÞ (cf. Definition 2).

Thus, the solution vector g~ partitions the conditionals into

the sets R0 ¼ fðcjaÞ; ðcjbÞg, each with an impact of 1, and

R1 ¼ fðcjdÞ; ðajdÞg, each with an impact of 2. Now lets

consider the possible worlds, x ¼ abcd, x0 ¼ abcd and

x00 ¼ abcd.

The world x falsifies both conditionals in R0 and none

in R1, and x0 falsifies only one conditional in R1 but no

other conditionals. The rank of both worlds with respect to

jg~ is 2, since jg~ðxÞ ¼ 1 þ 1 ¼ 2 and jg~ðx0Þ ¼ 2, so both

worlds are considered equally (im)plausible with respect to

this c-representation. Applying system Z yields the same

partitions but ranks of jZðxÞ ¼ 1 and jZðx0Þ ¼ 2, so under

system Z, x is considered more plausible than x0. This

valuation coincides with the lexicographic ordering in the

sense of [16], where x0 is considered less plausible than x
since x0 falsifies a conditional in set R1 and x does not.

For the worldsx andx00 we obtain that they are equivalent

with respect to their system Z rank, since they both falsify

conditionals in R0 and we have jðxÞ ¼ 1 ¼ jðx00Þ, but for

jg~ we have jg~ðx00Þ ¼ 1\2 ¼ jg~ðxÞ, so x00 is considered

more plausible than x. Also, since x falsifies more

conditionals in R0 than x00 and no conditionals in a more

severe partition, lexicographic ordering in the sense of [16]

considers x00 to be more plausible than x.

Thus, inference by c-representations is, in general, different

to inference by system Z or lexicographic ordering of the

worlds in the sense of [16]. It shares the central ideas of a

ceteris paribus ordering with the latter, and shares the property

of overcoming the Drowing Problem found for System Z.

Since the individual impacts are nonnegative integers, an

impact of a conditional can be 0. Since the rank of the worlds is

computed by a summation of the impacts of falsified condi-

tionals, falsifying or not falsifying a conditional with a zero

impact does not change the rank of a world, which is in

accordance with this conditional’s effect already being rea-

lised by other conditionals in the knowledge base.

5 A Declarative CLP Program for CRðRÞ

In this section, we will demonstrate that it is possible to

obtain a declarative program, called GenOCF, that solves

CRðRÞ while exploiting the concepts of constraint logic

programming in such a way that there is a direct corre-

spondence between the abstract formulation of CRðRÞ and

the executable program code. We will employ finite

domain constraints, and from (10) we immediately get 0 as

Table 2 Verification/falsification behavior of the knowledge base

R0
pen and possible worlds used in Example 3

x verifies falsifies x verifies falsifies

p b f r1, r2 r3 p b f r1 –

p b f r2, r3 r1 p b f – r1

p b f – r2, r3 p b f – –

p b f r3 r2 p b f – –

Table 3 Induced ranking function jð1;2;2Þ by the solution (1, 2, 2) of

the constraints in CRðR0
penÞ from Example 3

x jð1;2;2ÞðxÞ x jð1;2;2ÞðxÞ

p b f 2 p b f 0

p b f 1 p b f 1

p b f 4 p b f 0

p b f 2 p b f 0
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a lower bound for gi. Considering that we are interested

mainly in minimal solutions, due to (10) we restrict our-

selves to n as an upper bound for gi, yielding 0 6 gi 6 n

for all i 2 f1; . . .; ng with n being the number of condi-

tionals in R.

5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not

consider reading and parsing a knowledge base

R ¼ fðB1jA1Þ; . . .; ðBnjAnÞg. Instead, we assume that R is

already given as a Prolog code file providing the following

predicates variables/1, conditional/3 and indi-

ces/1:

variablesð½a1; . . .;am�Þ % list of atoms in R

conditionalði; hAii; hBiiÞ % representation ofðBijAiÞ
indicesð½1; :::;n�Þ % list of indicesf1; :::;ng

If R ¼ fa1; . . .; amg is the set of atoms, we assume a fixed

ordering a1\a2\ � � �\am on R given by vari-

ables([a1,...,am]). The fixed index ordering given by

indices([1,...,n]) ensures that the i-th conditional

can be accessed by conditional(i,A,B), and in a

solution vector [K1 ,..., Kn], the i-th component Ki is

the g-value for the i-th conditional.

In the representation of a conditional, a propositional

formula A, constituting the antecedent or the consequence

of the conditional, is represented by hAi where hAi is a

Prolog list [hD1i ,..., hDli]. Each hDii represents a

conjunction of literals such that D1 _ � � � _ Dl is a dis-

junctive normal form of A. Each hDi, representing a con-

junction of literals, is a Prolog list [b1 ,..., bm] of fixed

length m where m is the number of atoms in R and with

bk 2 f0, 1, g. Such a list [b1 ,..., bm] represents the

conjunctions of atoms obtained from _a1 ^ _a2 ^ � � � ^ _am by

eliminating all occurrences of >, where:

_ak ¼
ak if bk ¼ 1

ak if bk ¼ 0

> if bk ¼

8
><

>:

Example 5 The internal representation of the knowledge

base Rpen presented in Example 1 is:

As further preliminaries, using conditional/3 and

indices/1, we have implemented the predicates

worlds/1, verifying_worlds/2, falsify-

ing_worlds/2, and falsify/2, realising the evalu-

ation of the indicator function (1):

worldsðWsÞ % Ws list of possible worlds

verifying worldsði;WsÞ % worlds verifying ith conditional

falsifying worldsði;WsÞ % worlds falsifying ith conditional

falsifyði;WÞ % world W falsifies ith conditional

where worlds are represented as complete conjunctions of

literals, using the representation described above.

5.2 Generation of Constraints and Solutions

The particular program code given here uses the SICStus

Prolog system1 and its clp(fd) library implementing con-

straint logic programming over finite domains [19]. The

main predicate kappa/2 expecting a knowledge base KB

of conditionals and yielding a vector K of gi values as

specified by (11) is presented in Fig. 1.

After reading in the knowledge base, the constraints for

K are generated. In constraints/1, after getting the

list of indices, a list K of free constraint variables, one for

each conditional, is generated; in the two subsequent sub-

goals, the constraints for the elements of K corresponding

to the formulas 0 6 gi 6 n and (11) are generated. Finally,

labeling([], K) yields a list of gi values. Upon

backtracking, this will enumerate all possible solutions

with an upper bound of n for each gi.
Figure 2 shows how the goal constrain_K(Is, K)

in kappa/2 generates a constraint for each index i 2
f1; . . .; ng according to (11). Given an index I, con-

strain_Ki(I,K) (cf. Fig. 2) determines all worlds ver-

ifying and falsifying the I-th conditional; over these two sets

of worlds the two min expressions in (11) are defined. Two

lists VS and FS of sums corresponding exactly to the first

and the second sum, repectively, in (11) are generated (how

this is done is defined in Fig. 3 and will be explained below).

With the constraint variables Vmin and Fmin denoting the

minimum of these two lists, the constraint

Ki #[ Vmin � Fmin

given in the last line of Fig. 2 reflects precisely the

restriction on gi given by (11).

For an index I, a kappa vector K, and a list of worlds

Ws, the goal list_of_sums(I, K, Ws, Ss)

(cf. Fig. 3) yields a list Ss of sums such that for each

world W in Ws, there is a sum S in Ss that is generated by

sum_kappa_j(Js, I, K, W, S) where Js is the list of

1 http://www.sics.se/isl/sicstuswww/site/index.html.
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indices f1; . . .; ng. In the goal sum_kappa_j(Js, I,

K, W, S), S corresponds exactly to the respective sum

expression in (11), i.e., it is the sum of all Kj such that J 6¼
I and W falsifies the j-th conditional.

After all constraints have been generated, the final

subgoal of kappa/2 (Fig. 1) yields all solutions of

CRðRÞ.

Example 6 If kb_penguins.pl is a file containing the

conditionals of Rpen given in Example 1, the first six

solutions generated by kappa/2 are:

Note that the first solution vector induces the OCF j given

in Table 1 (cf. Example 3).

Using the predicates described in Sect. 5.1, we have

presented the complete source code of the constraint logic

program GenOCF solving CRðRÞ. In Sect. 7, GenOCF

extended to find minimal solutions of CRðRÞ (cf. [4]) will

be used for computing inference relations induced by

minimal OCF models of R.

6 Minimal C-Representations

All c-representations built from (10), (11), and (12) provide

an excellent basis for model-based inference, for instance

each c-representation satisfies System P and none suffers

from the drowning problem [12–14]. However, from the

point of view of minimal specificity (see e.g. [6]), those

c-representations with minimal gi yielding minimal degrees

of implausibility are most interesting. In [10], an OCF j
accepting R is said to be minimal iff for every other j0

accepting R there exists a world x 2 X with jðxÞ\j0ðxÞ.
Since in this paper, our focus is on c-representations, and

since for any R, the OCFs being c-representations and

accepting R are induced by the solutions of CRðRÞ, we

will consider different orderings on SolCRðRÞ proposed in

[3, 4], leading to three different minimality notions: The

minimal accumulated impact of the conditionals (sum-

minimality), the pareto-minimal impact of the conditionals

(cw-minimality), and the pareto-minimal ranking of the

worlds in the induced ranking functions (ind-minimality).

Definition 3 (sum-minimal, 4þ) Let R be a knowledge

base and g~, g~0 2 SolCRðRÞ. Then

ðg1; . . .; gnÞ4þðg01; . . .; g0nÞ iff
X

16i6n

gi 6
X

16i6n

g0i:

ð13Þ

A vector g~ is sum-minimal iff g~4þ g~0 for all g~0 2 SolCRðRÞ.
We write g~�þ g~0 iff g~4þ g~0 and g~0 64þ g~.

kappa(KB, K) :- % K vector of c-repr. for KB
consult(KB),
constraints(K), % generate constraints for K
labeling([], K). % generate solution

constraints(K) :-
indices(Is), % Is list of indices [1,2,...,N]
length(Is,N), % N number of conditionals in KB
length(K,N), % generate list of free variables

% K = [Kappa_1,...,Kappa_N]
domain(K,0,N), % 0 <= kappa_I <= N for all I
constrain_K(Is,K). % generate constraints as in (9)

Fig. 1 Main predicate kappa/2

constrain_K([],_). % generate constraints for
constrain_K([I|Is],K) :- % all kappa_I as in (9)

constrain_Ki(I,K), constrain_K(Is,K).

constrain_Ki(I,K) :- % constrain kappa_I as in (9)
verifying_worlds(I,VWs), % worlds verif. I-th cond.
falsifying_worlds(I,FWs), % worlds falsif. I-th cond.
list_of_sums(I,K,VWs,VS), % VS list of sums for VWs
list_of_sums(I,K,FWs,FS), % FS list of sums for FWs
minimum(Vmin,VS), % Vmin minimum for verif. worlds
minimum(Fmin,FS), % Fmin minimum for falsif. worlds
element(I,K,Ki), % Ki variable for kappa_I
Ki #> Vmin - Fmin. % constrain kappa_I as in (9)

Fig. 2 Constraining the vector K representing g1; . . .; gn as in (11)

% list_of_sums(I,K,Ws,Ss): list of sums as in (9):
% I index from 1,...,N
% K kappa vector
% Ws list of worlds
% Ss list of sums:
% for each world W in Ws there is S in Ss s.t.
% S is sum of all kappa_J with
% J \= I and W falsifies J-th conditional
list_of_sums(_, _, [], []).
list_of_sums(I, K, [W|Ws], [S|Ss]) :-

indices(Js),
sum_kappa_j(Js, I, K, W, S),
list_of_sums(I, K, Ws, Ss).

% sum_kappa_j(Js,I,K,W,S): sum as in (9):
% Js list of indices [1,...,N]
% I index from 1,...,N
% K kappa vector
% W world
% S sum of all kappa_J s.t.
% J \= I and W falsifies J-th conditional
sum_kappa_j([], _, _, _, 0).
sum_kappa_j([J|Js], I, K, W, S) :-

sum_kappa_j(Js, I, K, W, S1),
element(J, K, Kj),
((J \= I, falsify(J, W)) -> S #= S1 + Kj; S #= S1).

Fig. 3 Generating list of sums of gi as in (11)
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As we are interested in minimal gi-vectors, an important

question is whether there is always a unique minimal

solution. This is not the case; the following example

illustrates that SolCRðRÞ may have more than one sum-

minimal element.

Example 7 Let Rbirds ¼ fr1; r2; r3g be the following set

of conditionals:

r1 : ðf jbÞ birds f ly

r2 : ðajbÞ birds are animals

r3 : ðajfbÞ f lying birds are animals

From (11), we get

g1 [ 0

g2 [ 0 � minfg1; g3g
g3 [ 0 � g2

and since gi > 0 according to (10), the two vectors

g~ð1Þ ¼ ðg1; g2; g3Þ ¼ ð1; 1; 0Þ
g~ð2Þ ¼ ðg1; g2; g3Þ ¼ ð1; 0; 1Þ

are two different solutions of CRðRbirdsÞ with
P

16i6n gi ¼
2 that are both minimal in SolCRðRbirdsÞ with respect to 4þ.

Instead of taking the sum of the gi, we can also consider

the componentwise ordering 4cw.

Definition 4 (cw-minimal, 4cw) Let R be a knowledge

base and g~, g~0 2 SolCRðRÞ. Then

ðg1; . . .; gnÞ4cwðg01; . . .; g0nÞ
iff gi 6 g0i for all i 2 1; . . .; nf g

ð14Þ

A vector g~ is cw-minimal iff there is no vector g~0 2
SolCRðRÞ such that g~0

4cw g~ and g~ 64cw g~
0.

Example 8 The two sum-minimal solution vectors g~ð1Þ

and g~ð2Þ for Rbirds from Example 7 are both also cw-

minimal.

Instead of defining an ordering directly in terms of the

solution vectors in SolCRðRÞ as done for 4þ and 4cw, the

following ordering on SolCRðRÞ takes the ordering of the

induced ranking functions into account.

Definition 5 (ind-minimal, 4O) Let R be a knowledge

base and g~, g~0 2 SolCRðRÞ. Then

ðg1; . . .; gnÞ4O ðg01; . . .; g0nÞ iff jg~ðxÞ 6 jg~0 ðxÞ for all x 2 X

ð15Þ

A vector g~ is ind-minimal iff there is no vector g~0 2
SolCRðRÞ such that g~0

4O g~ and g~ 64O g~0.

Example 9 Consider again the knowledge base Rbirds

from Example 7 and the two solution vectors g~ð1Þ and g~ð2Þ.

Table 4 shows the ranking functions induced by g~ð1Þ and

g~ð2Þ. While both g~ð1Þ and g~ð2Þ are sum-minimal and also cw-

minimal, only g~ð2Þ is ind-minimal because jg~ð2Þ ðabf Þ ¼
1\2 ¼ jg~ð1Þ ðabf Þ and jg~ð2Þ ðxÞ ¼ jg~ð1Þ ðxÞ for all x with

x 6¼ abf .

Although for the knowledge base Rbirds there is a unique

ind-minimal solution of CRðRbirdsÞ, there are knowledge

bases R with multiple ind-minimal solutions of CRðRÞ that

induce different ranking functions accepting R; examples

of such knowledge bases are given in [3]. Note that this

implies that an ind-minimal solution of CRðRÞ does not

necessarily induce the unique pareto-minimal model of R
with respect to the ranking of worlds generated with Sys-

tem Z (see Sect. 4.1 and [21]), underpinning the observa-

tion that c-representations and System Z are different in

general (see Example 4 and [14, 24]).

In order to define inference over the minimal models of

a knowledge base R, we consider subsets of SolCRðRÞ
containing only the minimal c-representations with respect

to one of the defined notions of minimality.

Solmin
4þ

ðCRðRÞÞ ¼ fg~ jg~2 SolCRðRÞ and g~ is sum-minimalg
ð16Þ

Solmin
4cw

ðCRðRÞÞ ¼ fg~ jg~2 SolCRðRÞ and g~ is cw-minimalg
ð17Þ

Solmin
4O

ðCRðRÞÞ ¼ fg~ jg~2 SolCRðRÞ and g~ is ind-minimalg
ð18Þ

Proposition 2 Let R be a knowledge base. Then

Solmin
4þ

ðCRðRÞÞ � Solmin
4cw

ðCRðRÞÞ ð19Þ

Solmin
4O

ðCRðRÞÞ � Solmin
4cw

ðCRðRÞÞ ð20Þ

holds.

Proof For proving (19), assume there is a g~2
Solmin

4þ
ðCRðRÞÞ with g~ 62 Solmin

4cw
ðCRðRÞÞ. Then there is a

g~0 2 Solmin
4cw

ðCRðRÞÞ with g~0
4cwg~ and g~0 6¼ g~. From (14) we

get g0i 6 gi for all i 2 1; . . .; nf g and g0s\gs for some

s 2 1; . . .; nf g, and thus:

Xn

i¼1

g0i\
Xn

i¼1

gi ð21Þ

Therefore, g~0 �þ g~ and hence g~ 62 Solmin
4þ

ðCRðRÞÞ, contra-

dicting the assumption and thus implying (19).

For proving (20), assume there is a g~2 Solmin
4O

ðCRðRÞÞ
with g~ 62 Solmin

4cw
ðCRðRÞÞ. Then there is a g~0 2

Solmin
4cw

ðCRðRÞÞ with g~0
4cwg~ and g~0 6¼ g~. From (14) we
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get g0i 6 gi for all i 2 1; . . .; nf g and g0s\gs for some

s 2 1; . . .; nf g.

Since we excluded self-fulfilling conditionals ðBjAÞ with

A � B from a knowledge base R, there is at least one world

xs 2 X with xs � AsBs. From (12) we get:

jg~0 ðxÞ 6 jg~ðxÞ for allx 2 X ð22Þ

jg~0 ðxsÞ\jg~ðxsÞ ð23Þ

That means that g~0
4O g~ and g~ 64O g~0; hence,

g~ 62 Solmin
4O

ðCRðRÞÞ, contradicting the assumption and thus

implying (20). h

7 C-Inference Based on Preferred Models

Each of the ordering relations 4	 with 	 2 fþ; cw;Og
induces a set of solutions of CRðRÞ that are minimal with

respect to 4	, cf. (16)–(18). Using the OCFs induced by

these 4	-minimal solutions

Omin
4	

ðCRðRÞÞ ¼ jg~ j g~2 Solmin
4	

ðCRðRÞÞ
n o

ð24Þ

as preferred models, we obtain three nonmonotonic infer-

ence relations. We say that a formula B is (skeptically) 	-

entailed by a formula A (in the context of a knowledge base

R) iff every 	-minimal OCF accepting R also accepts the

conditional ðBjAÞ, i.e.:

A j�	B iff j�O ðBjAÞ for all j 2 Omin
4	

ðCRðRÞÞ ð25Þ

We have developed the system InfOCF that implements

these three inference relations j�þ, j� cw, j�O. Addition-

ally, InfOCF also implements system Z inference and

p-entailment and compares the inference results. The sys-

tem uses an extension of GenOCF for computing all 4	-
minimal ranking functions. For computing system Z

inference and p-entailment, InfOCF employs a straight-

forward Haskell implementation of the consistency test for

a knowledge base (Listing 1). The user interface (UI) and

the inference over a set of minimal C-Representations is

implemented in Java using the library Log4KR.2 For

checking whether the inference A j�	B holds, InfOCF

determines the ranks jðABÞ and jðABÞ and checks

jðABÞ\jðABÞ for every computed 	-minimal ranking

function j.

Figure 4 shows an example of InfOCF in use. The

knowledge base Rpen introduced in Example 1 has been

loaded in the top left corner. The computed ranking

functions are shown in the top right corner. The lower

half of the UI is used for inference where the query is

entered in two text fields for checking whether A entails

B in the context of the given knowledge base; from these

formulas the query conditional ðBjAÞ is constructed. In

addition to (skeptical) c-inference j�	, InfOCF also

implements credulous entailment where A credulously

entails B (in the context of a knowledge base R) iff there

is a 	-minimal OCF accepting R that also accepts the

conditional ðBjAÞ.
The results of the last query as well as of the previous

queries are listed in the bottom right. The particular queries

shown in Fig. 4 are already discussed in Example 1 and

demonstrate the drowning problem observable in system Z

and the difference between inference over all ranking

models (system p) and system Z as well as the different

minimal c-representations.

Since the solutions for CRðRpenÞ which are sum-, cw- or

ind-minimal, respectively, coincide, there is no difference

in c-inference for the three different notions of minimality.

The following example demonstrates that this is not the

case in general.

Example 10 Let Rstrange ¼ r1; r2; r3; r4; r5f g be the fol-

lowing set of conditionals:

r1 : ðbjpÞ penguins are birds

r2 : ðbjpÞ non-penguins are birds

r3 : ðbjpsf Þ f lying strange non-penguins are birds

r4 : ðsjbf Þ f lying things that aren0t birds are strange

r5 : ðpjf Þ things that don0t f ly are likely penguins

For CRðRstrangeÞ, the impact vector g~ð1Þ ¼ ð1; 0; 1; 2; 1Þ is

both cw- and ind-minimal while g~ð2Þ ¼ ð1; 1; 0; 1; 1Þ is cw-,

ind- and sum-minimal; there are no other minimal solu-

tions. For the four worlds satisfying pf , their assigned ranks

under both solutions and under system Z are given in

Table 5.

For the conditional ðbjpf Þ observe that jg~ð1Þ �O= ðbjpf Þ
since jg~ð1Þ ðpbf Þ ¼ jg~ð1Þ ðpbf Þ, but jg~ð2Þ �O ðbjpf Þ since

jg~ð2Þ ðpbf Þ ¼ 1\2 ¼ jg~ð2Þ ðpbf Þ. Thus, pf =j� cwb and

pf =j�Ob1, but pf j� þb. This shows that skeptical inference

over all c-representations induced by sum-minimal impact

vectors differs both from inference over cw-minimal and

over ind-minimal models in general.

Table 4 Ranking functions induced by the solution vectors g~ð1Þ and

g~ð2Þ from Example 7

x jg~ð1Þ ðxÞ jg~ð2Þ ðxÞ x jg~ð1Þ ðxÞ jg~ð2Þ ðxÞ

abf 0 0 abf 1 1

abf 1 1 abf 2 1

abf 0 0 abf 0 0

abf 0 0 abf 0 0

2 https://www.fernuni-hagen.de/wbs/research/log4kr/index.html.
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Inference with a single c-representation and inference

with system Z are different in general (see [14, 24]), and it

also has been shown that skeptical inference over all

c-representations of a given knowledge base (c-inference)

differs from system Z inference (see [2]). The latter is also

the case for skeptical inferences over a set of 4	-preferred

c-representations, as these relations also do not suffer from

the Drowning Problem, which does occur for system Z.

Compared to skeptical c-inference, taking only minimal/

preferred models into account relaxes the conditions for

inference. Thus, minimal c-inference extends skeptical

c-inference; the exact formal relationships among these

different c-inference relations have still to be investigated

in detail.

8 Conclusions and Further Work

In this paper we studied conditionals and conditional

knowledge bases which can be used by an intelligent rea-

soning agent. For obtaining a complete epistemic state

from the (usually incomplete) knowledge base, we recalled

the established inductive inference approaches p-entail-

ment, system Z, and c-representations. These approaches

generate inference relations based on ranking models of the

knowledge base. Here, system Z defines the inference

relation based on the unique pareto minimal ranking

model, whereas p-entailment is the skeptical inference over

all ranking models of the knowledge base. We used this

idea to contrast the skeptical inference over all c-repre-

sentations of a knowledge base [2] with inference relations

defined as skeptical inference over preferred ranking

models of this knowledge base. These preference relations

are defined over the c-representations of a knowledge base

induced by three different notions of minimality. Using a

high-level, declarative approach based on constraint-logic

programming techniques, we developed a practical tool

implementing the resulting three inference relations. Using

our implementation, we demonstrated that these inference

relations based on c-representations differ from the

Fig. 4 User interface InfOCF for nonmonotonic inference based on ranking functions

Table 5 Assigned ranks for worlds in which pf holds

x jg~ð1Þ ðxÞ jg~ð2Þ ðxÞ jZRstrange
ðxÞ

pbsf 1 1 1

pbsf 1 1 1

pbsf 1 2 1

pbsf 1 2 1
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classical approaches of p-entailment and system Z and that

in general they do not coincide.

Our current work includes the investigation of the for-

mal properties of the inference relations induced by the

different notions of minimality, as well as their exact

relationship to the inference over all c-representations.

While the focus of our implementation described here was

to obtain a high-level, declarative program close to the

abstract problem specification, in future work we will also

study the complexity of the inference relations and inves-

tigate performance optimizations.
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