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Abstract Causal Bayes nets capture many aspects of
causal thinking that set them apart from purely associative
reasoning. However, some central properties of this nor-
mative theory routinely violated. In tasks requiring an un-
derstanding of explaining away and screening off, subjects
often deviate from these principles and manifest the oper-
ation of an associative bias that we refer to as the rich-
get-richer principle. This research focuses on these two
failures comparing tasks in which causal scenarios are
merely described (via verbal statements of the causal rela-
tions) versus experienced (via samples of data that mani-
fest the intervariable correlations implied by the causal
relations). Our key finding is that we obtained stronger
deviations from normative predictions in the described
conditions that highlight the instructed causal model com-
pared to those that presented data. This counterintuitive
finding indicate that a theory of causal reasoning and
learning needs to integrate normative principles with
biases people hold about causal relations.

Keywords Causal reasoning . Causal learning . Explaining
away . Reasoning errors . Markov violations

In the past two decades causal Bayes nets have emerged as the
dominant theoretical tool to model complex causal reasoning.
They represent causal knowledge as a set of variables that

encode causes and effects and a set of causal arrows
representing causal influences directed from causes to effects.
For example, Fig. 1a presents a common effect modelwith two
causes generating a joint effect. This model might represent,
for example, that bacteria and viruses are two independent
causes of fever. Figure 1b, by contrast, depicts a common
cause modelwith one cause generating two effects. This mod-
el might represent that a virus causes two different symptoms.
Both networks in Fig. 1 embody default assumptions regard-
ing the independence of the underlying mechanisms respon-
sible for the causal relations. In the common cause network,
the cause independently generates the two effects. And, in the
common effect network it is often assumed that the two gen-
erative causes operate independently, implying a noisy-or in-
tegration function in which each cause leads to an increase in
the probability of the effect. Although more complex net-
works can be constructed we focus on those in Fig. 1 because
they present reasoners with the simplest reasoning situations
that nonetheless yield theoretically important predictions.

Research has shown that causal Bayes nets capture central
features of human causal reasoning (see Rehder in press-a, in
press-b; Rottman, in press; Rottman & Hastie, 2014;
Waldmann, in press, Waldmann & Hagmayer, 2013; for over-
views). Consistent with causal Bayes nets, people draw differ-
ent inferences with common cause and common effect
models, reflecting their sensitivity to causal direction
(because those graphs are equivalent if one ignores the
arrow heads; Rehder & Hastie, 2001; Waldmann, 2000;
Waldmann & Holyoak, 1992; Waldmann, Holyoak, &
Fratianne, 1995). In a common effect model, people know that
the effect is more likely if more causes are present (although
they can also reason with more complex integration functions
when given reason to, such as when causes operate
conjunctively; Griffiths, in press; Lucas & Griffiths, 2010;
Rehder, 2014b; also see Waldmann, 2007). In a common

* Bob Rehder
bob.rehder@nyu.edu

1 Department of Psychology, New York University, 6 Washington
Place, New York, NY 10003, USA

2 Department of Psychology, University of Göttingen,
Göttingen, Germany

Mem Cogn (2017) 45:245–260
DOI 10.3758/s13421-016-0662-3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-016-0662-3&domain=pdf


cause model, they not only know that the cause is more likely
if more effects are present but also that one effect implies
another when the status of the cause is unknown (Rehder &
Burnett, 2005). They know that intervening on a cause can
potentially generate its effect but not vice versa (Sloman &
Lagnado, 2005;Waldmann&Hagmayer, 2005). Causal reason-
ing can even reduce or eliminate standard reasoning fallacies
(e.g., base rate neglect, Ajzen, 1977; Bar-Hillel, 1980; Hayes
et al., 2014; Krynski & Tenenbaum, 2007; Tversky &
Kahneman, 1980). As a result of these successes, causal models
now play a key role in theories of conceptual structure (Kemp &
Tenenbaum, 2009; Oppenheimer, Tenenbaum,&Krynski, 2013;
Rehder, 2003a, 2003b, 2014; Rehder & Kim, 2009, 2010), in-
ductive reasoning (Holyoak, Lee, & Lu 2010; Kemp, Shafto, &
Tenenbaum, 2012; Lassaline, 1996; Lee & Holyoak, 2008;
Rehder, 2006, 2009; Shafto, Kemp, Bonawitz, Coley, &
Tenenbaum, 2008), decision making (Hagmayer & Sloman,
2009; Hagmayer & Meder, 2013), explanations (Lombrozo,
2010), and counterfactual reasoning (Pearl, 2000; Rips, 2010;
Rips & Edwards, 2013).

Nevertheless, some of people’s causal inferences are incon-
sistent with causal Bayes nets. For example, a common effect
model entails the principle of explaining away, cases in which
the presence of one cause in a common effect network makes

another less likely. In fact, people explain away too little rel-
ative to the prediction of causal Bayes nets. Causal Bayes nets
also embody independence constraints, cases in which vari-
ables should be probabilistically independent of one another.
In fact, people’s inferences often violate those independence
constraints.

This article is organized as follows. The following two sec-
tions describe the principles of explaining away and indepen-
dence and present the empirical evidence that people violate
those principles. In the third section, we argue that those viola-
tions are manifestations of a common principle, one we refer to
as the rich-get-richer principle. We then introduce a new exper-
imental paradigm for assessing accounts of human causal reason-
ing, namely, one that builds on recent research on the descrip-
tion-experience gap. As in that research, we examine how infer-
ences are drawn on the basis of causal relations that are (verbally)
described as compared to those that are also (or instead)
experienced, that is, manifested as a series of observations of
individual cases that reflect the correlations implied by those
causal relations. Besides being theoretically and practically im-
portant in its own right, we show that the described versus expe-
rienced comparison allows the predictions of the rich-get-richer
principle to be assessed for new types of inference problems.
These new predictions are then tested in two experiments.
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Fig. 1 (a) Normative predictions for a common effect network. (b)
Normative predictions for a common cause network. The dashed lines
represent the prediction of the normative model augmented with a rich-

get-richer bias. Arrows represent the negative shift in line slopes that
occurs with introduction of the rich-get-richer bias
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Failures of explaining away

Explaining away is a signature property of common effect
models with independent causes (Fig. 1a). Continuing our
example, suppose a virus (C1) and a bacterium (C2) indepen-
dently cause fever (E). If E is observed to occur, then the
probability that, say, the virus C1 is present increases. But if
it is then further observed that the second cause C2, the bac-
terium, is present, then the probability that virus C1 is also
present decreases. When an effect is present, the reduction
of the probability of one cause when another is observed is
called explaining away. The extent to which explaining away
is normative depends on the strengths and necessity of the
causes and the degree to which those causes are correlated
(see Morris & Larrick, 1995; Rottman & Hastie, 2014).

In light of the central role of explaining away in causal
reasoning, it is surprising that few studies have rigorously
tested whether human reasoning honors this principle. One
reason for this oversight may be that in social psychology a
related phenomenon, discounting (see Jones, 1979; Kelley,
1972) has been observed in many studies so that explaining
away has often been taken for granted (see Khemlani &
Oppenheimer, 2010; McClure, 1998, for reviews).
However, discounting has been used as an umbrella term
for different phenomena. First, people may discount because
they believe that the causes are mutually exclusive (or at least
negatively correlated). For example, upon observing that a
street is wet and a sprinkler is on, people tend to discount
rain as a cause of the wetness (Pearl, 2000). But this infer-
ence may be due to prior knowledge that sprinklers are typ-
ically turned off when it rains (i.e., a negative correlation
between sprinklers and raining) rather than explaining away.
Second, people’s diagnostic inferences (an inference from an
effect to a cause, i.e., p(C=1|E=1), where C=1 and E=1
denote that the cause and effect are present, respectively) are
weaker when they are aware that E has alternative causes that
are numerous and/or strong (e.g., Meder, Mayrhofer, &
Waldmann 2014; Oppenheimer et al., 2013; Rehder &
Kim, 2009; Waldmann, 2000; Waldmann & Hagmayer,
2005). For example, the probability of a disease given one
of its symptoms is lower to the extent that the symptom can
be caused by many other diseases. In this case discounting
characterizes how people reason as a causal model is aug-
mented with additional causal relations. A third case that is
occasionally confused with discounting or explaining away is
cue competition in learning, as predicted by the Rescorla–
Wagner rule (Rescorla & Wagner, 1972), for example. Cue
competition is different from explaining away as it is only
operative during learning of associative weight parameters;
its effect is a result of correlations between cues. By contrast,
explaining away can also occur after learning when causes
are independent and when both are strongly associated with
the effect.

We adopt a stricter definition of explaining away that
sets it apart from these other phenomena (e.g., negatively
correlated causes and the existence of alternative causes).
In particular, explaining away entails the inequality

p Ci ¼ 1 E ¼ 1; C j ¼ 1
�
�

� �

< p Ci ¼ 1 E ¼ 1jð Þ
< p Ci ¼ 1 E ¼ 1j ; C j ¼ 0

� � ð1Þ

For example, if a bacterium and a virus independent-
ly cause a symptom, the probability of the bacterium
given the symptom is lower if the virus is also present
and higher if the virus is absent. The explaining away
relationship is represented by the positively sloped solid
line linking these inference types (labeled A, B, and C)
in Fig. 1a.1

In fact, studies that have applied this stricter test of
explaining away have yielded mixed results. Most experi-
ments have either found that subjects explain away too little
(Fernbach & Rehder, 2013; Morris & Larrick, 1995) or not at
all; in some, the opposite result—an augmentation effect in
which p(Ci=1|E=1,Cj) >p(Ci=1|E=1,Cj=0)—was obtain-
ed (Fernbach & Rehder, 2013; Rehder, 2014a; see Rottman &
Hastie, 2014, for a review).

Failures of independence

Another common failure is that reasoners are not always
sensitive to the independence relations stipulated by causal
Bayes nets. Specifically, when the state of a variable’s
direct causal parents is known, the causal Markov
condition stipulates that that variable is conditionally inde-
pendent of each of its nondescendants (Hausman &
Woodward, 1999). This condition has a straightforward
causal interpretation: Apart from its descendants, one has
learned as much as possible about a variable once one
knows the state of all of its direct causes.

For example, for the common cause network in
Fig. 1b, the Markov condition stipulates that the two ef-
fects are independent conditioned on the cause, a condi-
tion commonly referred to as screening off (knowledge of
C “screens off” the flow of information from one effect to
another). That is, the following invariance (represented by

1 The quantitative predictions in Figure 1Awere generated assuming that
the marginal probability of both C1 and C2 (i.e., their “base rates”) is .33,
the strength (or “causal power”) of the both C1→E and C2→E is .67,
and that the aggregate strength of alternative causes ofE (i.e., causes other
than C1 and C2) is .20. The predictions for the common cause network in
Figure 1B are based on a marginal probability of C of .50, causal powers
of .67, and alternative cause strength of .33. Note however the purpose of
Figure 1 is to depict the qualitative pattern of inferences supported by the
two types of networks, patterns that hold for all nondegenerate parameter
values.
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the solid horizontal line between problem types A, B, and
C in Fig. 1b) should hold:

p Ei ¼ 1 C ¼ 1; E j ¼ 1
�
�

� � ¼ p Ei ¼ 1 C ¼ 1jð Þ
¼ p Ei ¼ 1 C ¼ 1j ; E j ¼ 0

� � ð2Þ

Numerous studies have shown that subjects who are asked
to make an inference from a given cause C to one of its effects
Ei, tend to be influenced by the presence or absence of other
effects of C (Ali, Chater, & Oaksford, 2011; Mayrhofer &
Waldmann, 2015; Park & Sloman, 2013; Rehder, 2014a;
Rehder & Burnett, 2005; Rottman & Hastie, 2016; Walsh &
Sloman, 2004; see Rottman & Hastie, 2014, for a review). For
example, if a virus that is known to cause two symptoms is
present in a particular patient, people tend to think that one
symptom is more probable when the other symptom is present
and less probable when it is absent.

The Markov condition also implies the existence of an
independence relation in common effect models, namely, the
causes should be independent when knowledge about the
common effect is absent (represented by the solid horizontal
line linking inference types D and E in Fig. 1a). This indepen-
dence relation is also commonly violated: People often judge
instead that p(Ci=1|Cj=1)>p(Ci=1|Cj=0) (Perales, Catena,
& Maldonado, 2004; Rehder, 2014a, 2014b; Rehder &
Burnett, 2005; Rottman & Hastie, 2016).

Note that several theories accounting for such violations
have been proposed in the literature (e.g., Park & Sloman,
2013, 2014). Some theories assume that people deviate from
the instructed causal models by bringing to bear prior domain
knowledge that leads them to augment the causal model.
Others attribute the violations to the presence of more abstract
domain knowledge (Mayrhofer & Waldmann, 2015; Rehder
& Burnett, 2005; Waldmann & Mayrhofer, 2016). The
General Discussion section will describe these proposals and
evaluate them as potential accounts of our results.

The rich-get-richer principle

What is responsible for the weak (or nonexistent)
explaining away and the violations of independence in
human causal reasoning? Rehder (2014a) proposed that
human causal reasoning exhibits an associative bias that
subsumes both sorts of violations. This bias is synony-
mous with what we will call a rich-get-richer principle
that states, in the case of causal models with generative
links, that reasoners assume that one variable is more
likely to be present to the extent that other variables in
the causal model are also present. Conversely, the bias
also entails that a variable is less likely to be present to
the extent that other variables in the causal model are

absent (the poor-get-poorer corollary of the rich-get-richer
principle).2

It is important to distinguish our use of “association” from
its use in traditional associative learning theory. In such theo-
ries, mechanisms are postulated that control how the strengths
of acquired associations vary as a function of, for example,
patterns of redundancy and competition between predictive
cues (e.g., Rescorla &Wagner, 1972). By contrast, association
in the present context refers to bidirectional noncompetitive
relations that reflect the associations gleaned from the learning
context.

The qualitative predictions of the rich-get-richer principle
are shown in Fig. 1 as dashed lines superimposed on the
normative predictions. First, consider explaining away in
Fig. 1a. Although the normative model predicts that
p(Ci=1|E=1,Cj=1)<p(Ci=1|E=1) , the fact that two vari-
ables are present in the former scenario (E=1,Cj=1) as com-
pared to only one in the latter (E = 1) raises the relative prob-
ability of Ci in the former scenario. Likewise, although the
normat ive model predicts that p (Ci = 1| E = 1) < p
(Ci=1|E=1,Cj=0), the fact that zero variables are absent in
the former scenario (E = 1) as compared to one in the latter
(E=1,Cj=0) raises the relative probability ofCi in the former.
These qualitative predictions are shown as the dashed line
connecting problem types A, B, and C in Fig. 1a. In particular,
the slope of the line connecting these plot points has shifted to
the negative (i.e., has become less positive).

The rich-get-richer principle also explains violations of in-
dependence. Recall that the causes of a common effect model
should be unconditionally independent, p(Ci= 1| Cj= 1) =
p(Ci= 1|Cj= 0). But the rich-get-richer principle explains
why Ci is viewed by reasoners as more probable in the former
scenario (in which one variable, Cj, is present) as compared to
the latter (Cj is absent). And, recall that the effects in a com-
mon cause model should be independent conditioned on the
c au s e , p (E i = 1 |C = 1 , E j = 1 ) = p (E i = 1 |C = 1 ) =
p(Ei=1|C= 1, Ej= 0). But the rich-get-richer principle ex-
plains why Ei is viewed as most probable in the first scenario
(two variables present) and least probable in the last scenario
(one variable present, one absent). These qualitative predic-
tions are shown as dashed lines for problem types D and E in
Fig. 1a and types A, B, and C, in Fig. 1b, respectively. Again,
the prediction is that the rich-get-richer effect will shift the
slopes of the lines connecting these plot points to the negative.

As mentioned, one purpose of this article is to test the
predictions of the rich-get-richer principle on new sets of
problem types. One of these sets is types F, G, and H in
Fig. 1a. The normative model predicts, unsurprisingly, that

2 For the causal networks considered here, the rich-get-richer principle is
equivalent to what Rottman and Hastie (2016) referred to as a
monotoncity principle, in which the strength of causal inferences are a
function of the number of variables present minus the number of variables
absent.
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the effect is more probable when more of its causes are pres-
ent, that is, p(E=1|Ci=1, Cj=1) > p(E=1|Ci=1, Cj=0) >
p(E = 1|Ci = 0, Cj= 0). A second set is types D and E in
Fig. 1b, for which the normative model predicts that the two
effects are unconditionally dependent, that is, p(Ei=1|Ej=1) >
p(Ei=1|Ej=0). A third set is types F, G, and H in Fig. 1b, for
which the normative model predicts that the cause is more
probable when more of its effects are present, that is,
p (C = 1 |E i = 1 , E j = 1 ) > p (C = 1 |E i = 1 , E j = 0 ) >
p(C=1|Ei=0, Ej=0). The rich-get-richer principle predicts
that all three of these effects should be stronger than predicted
by the normative model, as shown by the negatively shifted
dashed lines in Fig. 1. A contribution of the experiments that
follow will be the establishment of a baseline condition—de-
scribed in the following section—that establishes the exis-
tence of not only weak explaining away on independence
violations but a negative shift in slope for all six inference sets
in Fig. 1.

Note that our proposal is not that the rich-get-richer princi-
ple is the only influence on people’s causal inferences. Rather,
we claim that it functions as a bias that distorts the inferences
implied by the normative model. Accordingly, the magnitude
of the negative shifts in Fig. 1 will depend on how strongly the
principle manifests itself in particular reasoning situations and
particular reasoners.

Description versus experience in causal reasoning

Recent studies of judgment and decision making have uncov-
ered fundamental differences between reasoning based on de-
scribed versus experienced scenarios (see Hertwig, 2015, for
an overview). For example, experiments on risky choice have
asked if decisions depend on how the risk structure of gambles
is conveyed—as a summary of payoff distributions or by hav-
ing subjects experience the outcomes of a sequence of gam-
bles. These studies revealed a description-experience gap in
which sensitivity to outcomes with low probability depends
on the presentation format (e.g., Hertwig, Barron, Weber, &
Erev, 2004). Whereas initial research on the description-
experience gap focused on gambles, more recently other do-
mains have been studied (e.g., decision making in medical
domains; Lejarraga, Pachur, Frey, & Hertwig, 2016).

Whereas causal Bayes nets have been tested with experien-
tially conveyed statistical information (e.g., Gopnik et al.,
2004; Griffiths & Tenenbaum, 2005; Meder et al., 2014;
Rottman & Hastie, 2016; Waldmann, Holyoak, & Fratianne,
1995), many other studies have used verbal descriptions of
scenarios to convey causal models and the strengths of the
parameters (e.g., Fernbach, Darlow, & Sloman, 2011; Rehder
& Hastie, 2001; Rehder & Kim, 2009). Few studies have been
conducted that systematically compared different formats of
presenting causal information. A typical finding of these

reported by these studies is that causal strength is estimated
differently depending on whether learning data are presented
in trial-by-trial format or in a more compact format, for exam-
ple, tabular summaries (see Perales, Catena, Cándido, &
Maldonado, in press). In the description-based conditions, of-
ten no information is provided about quantitative parameters.

Our focus is on the influence of learning formats on sub-
jects’ ability to honor Markov constraints and to understand
explaining away, which have only in one study been investi-
gated by presenting causal models with trial-by-trial learning
data (Rottman & Hastie, 2016). The majority of studies has
presented causal models without data (e.g., (Ali et al., 2011;
Mayrhofer & Waldmann, 2015; Park & Sloman, 2013, 2014;
Rehder, 2014a; Rehder & Burnett, 2005; Walsh & Sloman,
2004). No systematic comparison between experience-based
and description-based learning have been conducted targeting
failures of causal reasoning in these very different formats of
presenting causal information. One reason for this omission
may be that the two paradigms were influenced by different
research traditions. Whereas experience-based causal learning
has been modeled after paradigms rooted in the associative
learning literature (e.g., Cheng, 1997; Shanks & Dickinson,
1987; Waldmann & Holyoak, 1992), description-based learn-
ing paradigms are grounded in the tradition of theory-based
categorization and conditional reasoning (Ali et al., 2011;
Fernbach et al., 2011; Rehder & Hastie, 2001).

This study compares the two formats in tasks that focus on
explaining away and independence. In the description-
experience condition, subjects receive instructions about a
causal model followed by a sample of data from the domain
that informs them about the statistical relations between the
causal events. Objective conditional probabilities computed
on the basis of the data sample alone will exhibit, for example,
explaining away and that the causes are unconditionally inde-
pendent (in the common effect condition) and that the effects
are independent conditioned on the cause (in the common
cause condition). By contrast, the description-only condition
provides only a description of the causal model. An
experience-only condition presents the data, but not the causal
model. This condition establishes a baseline regarding how
reasoners draw inferences on the basis of the data sample.

A choice had to be made regarding how the data—the
experience component—should be presented. In the
description-experience gap literature, several formats have
been tested ranging from sequences of gambles to lists of
medical records, for example. In the causal learning literature,
trial-by-trial learning has often been used, especially when
causal theories were tested against alternatives from the asso-
ciative learning literature (e.g., Waldmann, 2000). However,
formats that avoid the influence of memory effects and reduce
performance effects have also been tested (e.g., tabular infor-
mation or compact graphic representations of cases; see
Liljeholm & Cheng, 2007; Meder et al., 2014; Waldmann &
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Hagmayer, 2001). These experiments use a format that corre-
sponds to record-based learning in the judgment and
decision-making literature in which statistical information is
conveyed in a manner that is less cognitively demanding than
in trial-by-trial learning.

What differences do we expect? The most extreme differ-
ences we expect are between the description-only and the
experience-only conditions. In the description-only condition
no data are presented so that inferences are based solely on
causal model intuitions of the subjects. Thus, subjects are free
to make assumptions about the strength of causal relations. In
these kinds of situations, we typically see that subjects assume
probabilistic, but fairly strong relations (Lu, Yuille, Liljeholm,
Cheng, & Holyoak, 2008; Mayrhofer &Waldmann, in press).
Regardless of the assumed size of causal strength a failure of
explaining away can be diagnosed from the inference patterns
that they produce (see above). Because of the assumed rich-
get-richer principle, we expect an attenuation of explaining
away in this condition (see Rehder, 2014a), thus violating
the normative implications of a causal Bayes net
representation.

On the other end of the spectrum lies the experience-only
condition. In this condition subjects are presented with tabu-
lated data about the variables. No further cues (e.g., temporal
order) that might suggest a specific underlying causal model
are provided. Although it is possible to induce the class of
Markov equivalent models from covariation data alone
(Pearl, 2000; Spirtes, Glymour, & Scheines, 1993), there is
little evidence that untutored subjects are capable of doing this
without the aid of computers. Most attempts to test their com-
petency to induce causal models from covariation information
alone have demonstrated poor performance despite the fact the
tasks typically were simplified by restricting and
prespecifying the causal models under consideration (e.g.,
Lagnado & Sloman, 2004; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003). Better performance can only
be achieved with additional cues, such as temporal order or
interventions (Lagnado, Waldmann, Hagmayer, & Sloman
2007). None of these cues were offered in the present exper-
iments so that we expected that subjects in the experience-
only condition would just read off the requested conditional
probabilities from the data. Given that the data are normative
with respect to the causal model, we therefore predict the
strongest evidence for explaining away in this condition.

The most interesting condition is the description-
experience condition. From the viewpoint of normative causal
Bayes net theory, a theory that provides both normative data
and a causal model whose structure is perfectly consistent
with the data should lead to the best performance.
Performance should be better than in the description-only con-
dition because the data should help with getting the probabil-
ity estimates right. And, given that explaining away is a hall-
mark of causal Bayes nets, graphically displayed

causal models should further help. In light of the theoretical
framework of causal Bayes nets, our prediction is therefore
counterintuitive, especially when the contrast between
experience-only and description-experience is considered.
Although in both conditions objective data reflecting
explaining away relations are readily available, we expect
performance to beworsewhen additional information is given
about the underlying causal model, as in the description-
experience condition, relative to the experience-only condi-
tion. It will do so because causal models induce an associative
bias (i.e., the rich-get-richer principle), one that will counteract
the objective statistics in the data sample and shift the slope of
the ABC line in Fig. 1a to the negative. We predict that the
rich-get-richer principle will result in explaining away being
the weakest of all in the description-only condition, in which
the causal model is untethered from any objective data.

Analogous predictions apply to screening off. For a common
causemodelwhen the state of the cause is known,we predict that
reasoners’ tendency to incorrectly view the two effects as depen-
dent will be smallest (indeed, nonexistent) in the experience-only
conditionand largest in thedescription-only condition.For a com-
mon effectmodelwhen the effect is unknown, the twocauseswill
incorrectlybe seenasdependent in thedescription-onlycondition,
but not when the inferences are made on the basis of data alone.
(Again,weexpectperformance in thedescription-experiencecon-
dition to be intermediate between the description-only and expe-
rience-onlycondition.)That is, for the judgments that are the focus
here, providing causal knowledge will make subjects’ causal in-
ferences worse. We even expect that the rich-get-richer bias will
be observed in those inference types in Fig. 1 that are not inde-
pendent (D and E in Fig. 1b and F–H in both figures). That is, we
expect the slope of each line in Fig. 1 to exhibit a negative shift as
causal model information is introduced.

Experiments 1 and 2

We tested subjects’ inferences about a common effect model
(Experiment 1) or a common cause model (Experiment 2). Each
experiment contrasted thedescription-experience, description-on-
ly, and experience-only learning conditions, which we expected
wouldmoderate the predicted failures of causal model reasoning.

Method

Materials

Three domains were tested: economics, meteorology, and so-
ciology. Subjects were first told that the domain they were
about to study included three binary variables. For example,
in the domain of economics they were told that interest rates
could be either low or normal, trade deficits that were small or
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normal, and retirement savings that were high or normal. In
the domain of meteorology, the variables were ozone level, air
pressure, and humidity; in sociology they were degree of ur-
banization, interest in religion, and socioeconomic mobility.
To control for any domain knowledge that subjects might
bring to the experiment, a four-level counterbalancing factor
varied which senses of the variables were used. For example,
depending on this counterbalancing factor, subjects in the eco-
nomics condition learned that the nonnormal values for inter-
est rates, trade deficits, and retirement savings were (low,
small, high), (low, large, low), (high, small, low), or (high,
large, high).

Experiments 1 and 2 tested common effect and common
cause inferences, respectively. In both experiments, subjects
in the description-only and description-experience conditions
read two paragraphs describing two causal relations. The ini-
tial sentence of each paragraph stated that one variable caused
another whereas the rest described the mechanism responsible
for the causal relationship. For example: “Low interest rates
cause high retirement savings. Low interest rates stimulate
economic growth, leading to greater prosperity overall, and
allowing more money to be saved for retirement in particular.”
The variable counterbalancing described above necessitated
using different causal relationships, so that whereas some sub-
jects were told that low interest rates cause high retirement
savings, others were told that high interest rates cause high
retirement savings, still others that low interest rates cause low
retirement savings, and so forth. (See the Appendix for details
about the variables, causal relationships, and their
counterbalancing.) Subjects in both experiments were given
additional instructions emphasizing the independence of
the causal mechanisms. In Experiment 1 they were told
“Remember that both C1 and C2 can each bring about E
on its own. That is, it’s not the case that both of these
two have to be present for E to be present. Rather, C1

can independently produce E on its own, and C2 can
independently produce E on its own as well” (where the
experimenter used the variable names rather than C1,
C2, and E). In Experiment 2 subjects were told “E1 is
a direct result of C, and E2 is independently a direct
result of C.”

Subjects in the experience-only and description-experience
conditions were given a data sheet depicting a sample of items
drawn from the domain. In Experiment 1, the sample was the
most likely one of size 27 drawn from a common effect model
in which the base rate of the causesC1 andC2 is .32, the power
of the causal links is .83, and the strength of alternative causes
of E (the probability that E is present when C1 and C2 are both
absent) is .12. The low base rates of C1 and C2 were chosen in
order to yield a large normative explaining away effect (i.e., a
substantial positive slope for the line linking inference types
A, B, and C in Fig. 1a), thereby increasing the chance of
observing a reduction in that slope as a consequence of the

described causal model. In Experiment 2, the sample was the
most likely one of size 33 drawn from a common cause model
in which the base rate of the cause C is .50, the power of the
causal links is .67, and the strength of alternative causes of E1

and E2 (the probability that either is present when C is absent)
is .20. These resulting samples are presented in Table 1. Note
that the sample sizes of 27 and 33 were chosen because they
yielded samples whose statistics closely matched the target
parameters.

The data sheet organized the sample items into subgroups
that shared the same values for the variables. For example,
Fig. 2a shows a subgroup of five economies that each have
normal interest rates, small trade deficits, and high retirement
savings. Each item in the subgroup was numbered (#6, #7,
#13, etc.) to emphasize that it represented an individual econ-
omy. The data sheet showed eight such subgroups. The use of
three domains and the four-level factor that varied which var-
iable senses were used entailed the creation of 12 data sheets.
In addition, we introduced a two-level factor in which two
versions of each data sheet were created such that the sub-
groups appeared in different locations on the sheet. Thus,
there were a total of 24 data sheets in each experiment.

Procedure

Participants first studied several computer screens of informa-
tion about the domain and then performed the inference test.
The initial screens presented a cover story and a description of
the domain’s three variables and their two values. Description-
only and description-experience participants also observed
screens that presented the two causal relationships and a dia-
gram depicting the topology of the causal links (like those in
Fig. 1).When ready, participants took a multiple-choice test of
their knowledge. While taking the test, participants could re-
turn to the information screens they had studied; however,
doing so obligated them to retake the test.

Table 1 The data samples presented to subjects in the description-
experience and experience-only conditions of Experiments 1 and 2

Experiment 1 Experiment 2

C1 C2 E N C E1 E2 N

0 0 0 11 0 0 0 10

0 0 1 1 0 0 1 3

0 1 0 1 0 1 0 3

0 1 1 5 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 5 1 0 1 3

1 1 0 0 1 1 0 3

1 1 1 3 1 1 1 9
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Subjects were then presented with the inference test.
At the start of the test, subjects in the experience-only
and description-experience conditions were provided a
data sheet and told that “We have randomly chosen N
[economies/societies/weather systems] from around the
world and observed the three variables each has,” with
N = 27 (Experiment 1) or 33 (Experiment 2). Subjects
in the experience-only condition were instructed to use
the data sheet in answering the inference questions,
those in the description-only condition were told to
use the causal relations, and those in the description-
experience condition were told to use both.

The test included the eight inference types (A–H) shown in
Fig. 1a (Experiment 1) or 1b (Experiment 2). There were two
versions of some inference types (A–E and G) in which C1

and C2 (Experiment 1) or E1 and E2 (Experiment 2) swapped
roles. For instance, the two versions of inference type A in
Expe r imen t 1 we r e p (C 2 = 1 |E = 1 , C 1 = 1 ) and
p(C1 =1|E=1, C2=1). For each inference, the known variable
states were presented on the computer screen in boxes. Boxes
associated with unknown variables were empty, with the ex-
ception of the to-be-predicted variable, in which case the box
contained “???”. For example, Fig. 2b depicts an economy
known to have normal interest rates and high retirement sav-
ings and where trade deficits is the to-be-predicted variable.
The boxes were connected with arrows that reflected the
instructed causal relations in the description-only and
description-experience conditions. There were no arrows in
the experience-only condition in which no causal relations
were instructed. Responses were entered by positioning a slid-
er on a scale whose ends were labeled 0 and 100 % (see
Fig. 2b). The order of the test questions was randomized for
each participant. Inferences besides those in Fig. 1 were re-
quested, but will not be discussed here.

Participants

Experiments 1 and 2 each tested 144 New York University
undergraduates who received course credit for participating.
In each, condition (experience-only, description-experience,
description-only) was manipulated between subjects. In addi-
t ion, each study used the two between-subjects
counterbalancing factors described earlier (the four sets of
variables senses and the two versions of the data sheets).
Subjects were randomly assigned to these 3 × 4 × 2 = 24
between-subjects cells subject to the constraint that an equal
number appeared in each cell. These samples sizes are similar
to those in Rehder (2014a), which tested the same materials
and presented related inference questions.

Results

Initial analyses revealed no effects in either experiment of which
domain subjects learned, which variable senses were presented,
or which version of the data sheet was used, and so the results are
presented in Fig. 3a and b collapsed over these factors.

Experiment 1

We first asked whether our manipulation succeeded in chang-
ing the overall pattern of ratings shown in Fig. 3a. In fact, a 3
(condition: description-only, description-experience, experi-
ence-only) × 7 (inference type: A–H) ANOVA yielded a sig-
nificant interaction, F(14, 987) = 5.77, MSE = 309.5, η2 =
.076, p < .0001, confirming that ratings varied depending on
whether the causal model was conveyed by verbal description,
experience, or both. The pattern of responses in the
description-experience condition was significantly different

Fig. 2 (a) Example of a portion of one of the data sheets given to subjects in the economic condition. (b) Example of an inference question.
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from those in the experience condition, F(7, 658) = 4.70,MSE
= 333.9, η2 = .048, p < .0001, and marginally different from
those in the description condition, F(7, 658) = 1.64, MSE =
274.4, η2 = .017, p = .120. We separately present the sets of
trials that correspond to explaining away (inference types A,
B, and C), independence (D and E), and the nonindependent
trials (F, G, and H).

Explaining away (inferences A–C) Explaining away occurs
when the probability of a cause given its effect is lower when
an alternative cause is present (A < B) and higher when the
alternative is absent (B < C). Figure 3a reveals that all three
conditions exhibited overall explaining away in that the rat-
ings for inference A were lower than those for C. A 3
(condition) × 3 (inference type) ANOVA revealed a main
effect of condition, F(2, 141) = 27.08, MSE = 863.3, η2 =
.278, p < .0001, of inference type, F(2, 282) = 42.23, MSE =
212.9, η2 = .230, p < .0001, and an interaction, F(4, 282) =
4.91, MSE = 212.9, η2 = .065, p < .001. A test in which
condition (experience-only vs. description-experience vs.
description-only) and inference type (A vs. B vs. C) were
coded as linear factors also yielded an interaction, F(1,
94) = 7.19, MSE = 285.1, η2 = .071, p = .001. The
95 % confidence interval on the difference in the ABC
slopes derived from this analysis was [3.3, 22.9],
confirming the presence of the negative shift implied by
the rich-get-richer principle. Though less positive

than in the other conditions, the ABC slope in the
description-only condition was significantly greater than
zero, t(47) = 2.53, MSE = 348.8, η2 = .120, p = .015,
reflecting overall explaining away. Nevertheless, Fig. 3a
indicates that although this group exhibited normative
explaining away on inference types B and C (i.e., B <
C), they failed to do so on A and B (A ≅ B).

Independence (inferences D and E) The normative model
stipulates that causes are independent in a common effect
model and so predicts no difference between inferences D,
p(Ci=1|Cj=1), and E, p(Ci=1|Cj=0). Figure 3a reveals that
D < E in the experience-only and description-experience con-
ditions, whereas D > E in the description-only condition. A 3
× 2 ANOVA yielded a main effect of condition, F(2, 141) =
12.71, MSE = 404.4, η2 = .153, p < .0001, no effect of infer-
ence type, F < 1, and an interaction, F(2, 141) = 7.83, η2 =
.100, p < .001. Treating condition as a linear factor yielded an
interaction, F(1, 94) = 12.21, MSE = 207.5, η2 = .115, p <
.001, confirming the presence of a negative shift in the DE
slope as a causal model was introduced (the 95 % CI on the
difference in the slopes was [5.5, 23.6]). That slope was mar-
ginally positive in the experience-only condition, t(47) = 1.98,
p = .053, virtually zero in the description-experience condi-
tion, t < 1, and significantly negative in the description-only
condition, t(47) = 3.00, p = .004.

Fig. 3 (a) Results from Experiment 1 (common effect condition). (b) Results from Experiment 2 (common cause condition). Error bars are 95 %
confidence intervals
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Nonindependence (inferences F–H) Not surprisingly, sub-
jects judged that the common effect E was more likely as the
number of causes present increased. As predicted, though, the
FGH slope was more negative when a causal model was
instructed. A 3 × 3 ANOVA revealed a main effect of condi-
tion, F(2, 141) = 15.75,MSE = 1110.7, η2 = .183, p < .0001, of
inference type, F(2, 282) = 233.63,MSE = 440.9, η2 = .624, p
< .0001, and an interaction, F(4, 282) = 8.20,MSE = 440.9, η2

= .104, p < .0001. Treating condition and inference type as
linear factors yielded an interaction, F(1, 142) = 19.61,MSE =
658.8, η2 = .173, p < .0001, 95 % CI [18.1, 47.6], confirming
the negative shift in the FGH slope.

Experiment 2

The effectiveness of themanipulationwas again confirmedby the
interaction yielded by a 3 (condition) × 7 (inference type, A–H)
ANOVA, F(14, 987) = 8.21,MSE = 264.4, η2 = .104, p < .0001.
The pattern of responses in the description-experience condition
was significantly different from those in both the experience con-
dition,F(7, 658) =4.11,MSE=267.1,η2 = .042,p< .001, and the
description condition,F(7, 658)=3.93,MSE=290.1,η2= .040,p
< .001.Weseparately discuss trials corresponding to screeningoff
(inferencesA,BandC), and the twononindependent trial sets (D–
E and F–H).

Screening off (inferences A–C) Screening off stipulates that
two effects are independent given their common cause, that is,
it should be the case that inference types A, B, and C receive
the same ratings. Figure 3b reveals subjects in those condi-
tions that were provided with a causal model judged that A >
B > C instead, that is, they violated the Markov condition. A 3
(condition) × 3 (inference type) ANOVA revealed a main
effect of condition, F(2, 141) = 34.83, MSE = 850.1, η2 =
.331, p < .001, of inference type, F(2, 282) = 46.04, MSE =
162.9, η2 = .246, p < .001, and an interaction, F(4, 282) =
4.15, MSE = 162.9, η2 = .056, p = .003. A test in which
condition and inference type were coded as linear factors re-
vealed an interaction, F(1, 94) = 15.89, MSE = 158.3, η2 =
.144, p < .001, 95 % CI [7.0, 21.9]. The ABC slope was
negative in all three conditions, ps < .007.

Nonindependence (inferences D and E) The normative model
predicts that the two effects are conditionally dependent in the
absence of knowledge about the common cause, and Fig. 3b
reveals that subjects agreed. Yet the difference between infer-
ence D, p(Ei=1|Ej=1), and E, p(Ei=1|Ej=0), was greater in
the conditions that provided a causal model, consistent with
the rich-get-richer principle. A 3 × 2ANOVAyielded no effect
of condition, F(2, 141) = 1.31, MSE = 268.7, η2 = .018, p >
.250, an effect of inference type, F(1, 141) = 218.58, MSE =
157.9, η2 = .608, p < .001, and an interaction, F(2, 141) =
5.87, η2 = .077, p = .004. Treating condition as a linear factor

yielded an interaction, F(1, 94) = 13.85, MSE = 132.0, η2 =
.128, p < .001, 95%CI [5.2, 19.5], reflecting the negative shift
in the DE slope as a causal model was introduced.

Nonindependence (inferences F–H) Experiment 1 found
that a common effect was rated as more likely when more of
its causes were present and Experiment 2 found the analogous
result: The common cause was rated as more likely when
more of its effects were present, that is, F > G > H. As pre-
dicted, though, the FGH slope was more negative when a
causal model was instructed. A 3 × 3 ANOVA revealed a main
effect of condition, F(2, 141) = 12.49, MSE = 760.2, η2 =
.151, p < .0001, of inference type, F(2, 282) = 297.65, MSE
= 392.8, η2 = .679, p < .0001, and an interaction, F(4, 282) =
4.94,MSE = 392.8, η2 = .065, p < .001. Treating condition and
inference type as linear factors yielded an interaction, F(1, 94)
= 15.45, MSE = 485.5, η2 = .141, p < .001, 95 % CI [11.2,
38.8], confirming the negative shift in the FGH slope.

Discussion

We found stronger violations of the Markov constraint in the
described than the experienced conditions. Subjects failed to
fully understand both explaining away (Experiment 1) and
screening off (Experiment 2), especially in the conditions that
highlighted the causal model. By contrast, these violations
were weaker in conditions in which subjects were presented
with learning data that allowed them to read off the condition-
al probabilities. One deviation from our predictions are the
slight Markov violations we found in the experience-only
conditions (DE in Fig. 3a and ABC in Fig. 3b). We suspect
that some subjects misunderstood the inference question,
responding with conjunctive (i.e., p(X,Y)) rather than condi-
tional probabilities (p(X|Y)).

General discussion

Research in the past two decades has shown that causal Bayes
nets capture many aspects of human causal thinking—such as
sensitivity to differences in causal direction and between in-
ferences based on interventions versus observations—that sets
this type of reasoning apart from purely associative or logical
reasoning. However, central properties of this normative the-
ory are routinely violated. This research focused on failures of
explaining away and screening off by comparing conditions in
which causal models were merely described versus experi-
enced. Using this design, we followed the lead of the judg-
ment and decision-making literature, which has revealed in-
teresting dissociations in these two tasks, showing that biases
previously considered universal often depend on how scenar-
ios are presented (Hertwig, 2015).
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Our key finding is that we obtained stronger deviations
from the normative causal Bayes net model of causal rea-
soning in the conditions that described causal models
compared to those that presented learning data. The find-
ing in the described conditions is consistent with previous
studies demonstrating an associative bias in causal reason-
ing (Rehder, 2014a). We found that subjects’ inferences
conformed better to the normative reasoning implied by
causal Bayes nets in a condition that is typically used to
study associative learning as compared to one that pre-
sented a causal model. Although we found slight biases
in the experience-only condition as well (which may be
due to misunderstandings of the test questions), subjects
were overall relatively competent in estimating probabili-
ties from data.

Perhaps the most interesting comparison is between the
experience-only and the description-experience conditions
because in both subjects can access conditional probabilities
directly from the provided data. Recall that because there is
some flexibility in how test questions are translated into
probability inferences, the experience-only condition serves
as an important control for how subjects understand the test
questions. Here we found that adding information about the
underlying causal model in the description-experience con-
dition led to stronger violations of the normative implica-
tions of Bayes nets, supporting our claim that causal
models induce a rich-get-richer bias. Because it conveyed
qualitative causal model information but no statistics, judg-
ments in the description-only condition are less comparable
to those in the other two conditions in an absolute sense.
Nevertheless, it is meaningful to compare relative judg-
ments across conditions (i.e., to compare the slopes of the
six lines in Fig. 3), and in fact we found, as predicted, that
the influence of the rich-get-richer principle was strongest
in the description-only condition.

It is important to note that the rich-get-richer principle
does not imply that reasoners ignore the direction of cau-
sality in their causal inferences. Common cause and com-
mon effect networks are theoretically important because
they are structurally identical, ignoring the direction of
causality. Yet in every experimental test of which we are
aware (including this one), these networks elicit different
inferences (compare Fig. 3a and b). The conclusion to be
drawn from this work is not that people aren’t sophisticat-
ed causal reasoners but rather that their inferences are a
product of an interaction between the normative model and
the rich-get-richer principle. Consistent with this interpreta-
tion, a computational model that is under development and
that combines the rich-get-richer principle with predictions
derived from causal Bayes can successfully reproduce the
present results (Rehder, 2016). In particular, it simulta-
neously accounts for failures of both explaining away
and screening off.

Past explanations of the rich-get-richer principle

Having established the existence of the rich-get-richer effect
in causal reasoning, it is natural to ask why it occurs. As
mentioned in the introduction, a number of alternative ac-
counts have been proposed. But although it is likely that each
of these accounts contribute to the failures of explaining away
and screening off in specific cases, none provide a compre-
hensive account of the failures observed here and in the liter-
ature more broadly.

One class of explanation posits that the specific prior
knowledge that subjects bring to the experimental situation
influences the causal model representation people reasonwith.
For example, in the current experiments subjects who were
taught that low interest rates, large trade deficits, and high
retirement savings were causally related might have had
preexisting beliefs about how those variables were causally
related, beliefs that just so happened to yield (apparent)
Markov violations and weak explaining away. Yet this con-
jecture fails to account for the results from the present exper-
iments because of the use of counterbalanced materials.
Because some subjects were told that low interest rates cause
high retirement savings and others that low interest rates cause
low retirement savings (and still others were told that high
interest rates cause high retirement savings, etc.). That is,
any prior knowledge that subjects might have possessed about
interest rates and retirement savings canceled out by averaging
over subjects.

Some accounts that appeal to specific domain knowledge
only pertain to certain causal network topologies. Park and
Sloman (2013, 2014) demonstrated that reasoners instructed
on a common cause model and then confronted with a test
question that specifies, as part the premise, a situation in
which the cause C is present and an effect (say E1) is absent
will augment the model with a disabler to explain why C
didn’t produce E1. Moreover, if they view C→E1 and C→
E2 as sharing underlying causal mechanism then the factor
that potentially disables C→E1 may, when present, also dis-
ableC→E2, (with the result that the absence of E1 is evidence
for the presence of the disabler which in turn is evidence for
the absence of E2, that is, an [apparent] violation of screening
off occurs). Yet not only does this account fail to explain the
screening off errors that arise whenC→E1 andC→E2 do not
share a mechanism (as they didn’t in the current Experiment
2), it provides no account of the errors that arise with a com-
mon effect network (unconditionally dependent causes and
weak explaining away).

Perhaps the strongest evidence against accounts based on
domain-specific knowledge comes from independence viola-
tions observed even when no domain is specified. For exam-
ple, Rehder (2014a) found that an abstract condition in which
the variable names were simply letters (A, B, and C) yielded
independence violations as large as those that usedmeaningful
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content (e.g., interest rates, trade deficits, and retirement
savings).

Other approaches appeal not to domain knowledge
per se but rather to the abstract expectations that rea-
soners have about the reasoning situation. Inspired by
dispositional theories of causation (e.g., Wolff, 2007),
Mayrhofer and Waldmann (2015) proposed that people
distinguish between causal agents and causal patients
participating in causal relations (e.g., in “Wind moves
the boat,” wind is the causal agent and the boat the
patient). In most real-world causal models, the causes
are associated with the agent role. Mayrhofer and
Waldmann’s studies showed that in situations in which
an agent fails to produce the expected effect, a more
general failure of the capacity of the agent is inferred.
Thus, the violations of screening off that obtain with a
common cause network are expected when the common
cause is represented as the causal agent. A novel pre-
diction, which was empirically confirmed, is that
Markov violations should be diminished in the rare
cases in which causal agents are associated with the
effect events. This theory explains the Markov viola-
tions in abstract scenarios under the assumption that
agents are per default associated with the cause event
(Waldmann & Mayrhofer, 2016). Just as with Park and
Sloman (2013, 2014), however, it provides no account
of the errors associated with common effect networks.

Rehder and Burnett (2005) appealed to abstract ex-
pectations to explain the Markov violations they ob-
served with variables that were causally related features
of categories (also see Rehder, 2014b). They proposed
that people believe that many categories possess under-
lying causal processes that bring rise to observed fea-
tures, a view related to the well-known essentialist in-
tuitions about categories (Gelman, 2003; Medin &
Ortony, 1989). Such a view reproduces the rich-get-
richer effect: The presence of one feature implies the
presence of normally operating causal processes that in
turn imply the presence of other features. But although
this account doesn’t assume specific domain knowledge,
it is specific to features of categories and so doesn’t
apply to the materials tested in most studies of causal
reasoning errors (including this one).

Nevertheless, it is tempting to try to extend this account to
non-categorical materials. After all, it is reasonable to suppose
that subjects in the current experiments assumed that the eco-
nomic, meteorological, and sociological variables were relat-
ed in ways other than those we specified, even if they had no
specific ideas about what those relationships were. However,
recognize that the assumption that variables are related doesn’t
explain the direction of the observed violations. Merely be-
lieving that, say, interest rates, trade deficits, and retirement
savings are somehow causally related doesn’t explain why,

with a common cause network, p(Ei= 1|C=1, Ej= 1) was
greater rather than less than p(Ei=1|C=1, Ej=0) or why, with
a common effect network, p(Ci=1|Cj=1) was greater rather
than less than p(Ci=1|Cj=0) (or why explaining away was
too weak rather than too strong).

Additional assumptions are thus required to explain
why the variables might be causally related in just the
way required to yield the observed inferences. Rehder
(2014a) raised the possibility that a search of memory
triggered by comprehending the materials may be biased
toward other generative relations involving the causally
related variable senses (e.g., reading that “low interest
rates cause small trade deficits” may yield facts about
how low interest rates and small trade deficits are posi-
tively related, but not facts about how they are negatively
related, or how high interest rates and small trade deficits
are positively related). Or, perhaps reasoners spontaneously
construct other ways of how low interest rates and small
trade deficits are generatively related. Then, perhaps their
experience with retrieving or constructing causal models
with many generative relations generalizes to abstract rea-
soning scenarios. A very different sort of approach would
be to imagine that the theories that scientists have discov-
ered (or at least the ones that people are taught) include
variables that tend to be generatively related in multiple
ways. People then generalize this fact to all domains about
which they reason (including abstract ones).

In summary then, none of the proposed accounts provide a
full satisfactory account of the documented reasoning errors.
Although accounts based on abstract expectations are clearly
more promising than ones based on specific domain knowl-
edge, they are so far either restricted to certain network topol-
ogies (common cause networks) or require additional assump-
tions that will remain speculative until additional evidence in
their favor is established (e.g., biased memory search). Further
research will be required to determine if, for example, abstract
accounts can be developed for other network topologies (such
as common effect networks). Alternatively, the rich-get-richer
principle may prove to be a ubiquitous feature of human caus-
al reasoning, one that manifests itself consistently across con-
tent domains, abstract expectations, and network topologies.

Perspectives on future research

There are a number of open questions regarding the nature
of the rich-get-richer principle. In the introduction we not-
ed that our use of “association”—bidirectional links be-
tween events—differs from its use in in traditional asso-
ciative learning theory in which cue competition between
redundant cues plays an important role (e.g., Rescorla &
Wagner, 1972). One open question concerns how a param-
eter that represents the magnitude of the rich-get-richer
principle is estimated from learning data along with the
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rest of the parameters of a causal model (Lagnado et al.,
2007; Rottman, in press; Waldmann, 1996). One possibil-
ity raised by some researchers is that people may use two
different learning mechanisms, an associative and a causal
one, with context and performance factors determining
which of the two is active (see, e.g., Jocham et al.,
2016; Le Pelley, Griffiths, & Beesley, in press).
Although this model, given its focus on learning, is very
different from ours, it would be interesting to study
whether there are interrelations between the two.

Alternative interpretations of the rich-get-richer princi-
ple exist. One reason that reasoners might violate inde-
pendence is that activation “spreads” along the nodes of a
causal net in much the same it is thought to do so in
memory, even in cases when the flow of information is
normatively (according to causal Bayes nets) blocked. For
example, in a common cause model in which the state of
the common cause is known, information about one effect
might “leak” through the common cause node to the other
effect (violating independence). An alternative interpreta-
tion is that reasoners conceive of causal models as having
“prototypical” states and, in a particular reasoning situa-
tion, compute the similarity between that situation and the
most similar prototypical state—and predict that the to-be-
predicted variable will take on the value in the prototype
as a function of that degree of similarity. For example, a
situation in which a common cause and an effect are both
present is more similar to a prototype network state (all
variables present) than one in which only the common
cause is present; thus, the other effect is more likely to
be present in the former (violating independence).
Although the present results do not allow us to distinguish
these possibilities, Rehder (2016) presented causal models
that were more complicated than those tested here and
found that subjects’ inferences were more consistent with
reasoning with respect to prototypical network states. This
result naturally leads to the question of how causal infer-
ences are affected by the frequency of prototypical states
in learning data.

Finally, the vast majority of studies of causal reasoning
failures have investigated models with independent, gener-
ative links. Little research has studied independence failures
with alternative functional forms (e.g., when causes com-
bine conjunctively rather than independently; although see
Rehder, 2014b) or when causal relations are preventative
rather than generative. Open questions include, for exam-
ple, what “prototypical” network states are implied by a
causal model with a mixture of generative and preventative
causal relations. In such cases the prototype might embody
negative rather than positive associations among some
variables.

In summary, our findings indicate that neither a noncausal
associative nor a purely normative causal theory, such as

Bayes nets, fully captures human causal reasoning. An inte-
grated formal theory that integrates nonnormative biases with
normative sensitivity to causal features is an important goal
for future research.

Author note Bob Rehder, Department of Psychology, New York
University, USA. Michael R. Waldmann, Department of Psychology,
University of Göttingen, Germany.

Appendix

Materials

Table 2 presents the three variables used in the domains of
economics, meteorology, and sociology. Recall from the main
text that the variables were described as binary to subjects
(e.g., interest rates were either low or normal). To control for
any domain knowledge that subjects might have brought to
the experiment, a between-subjects factor that took on the
values +++, + - -, - + -, and - - + controlled which variable
states were used, where each +/- picks out the value in
Table 2. For example, the nonnormal values for interest rates,
trade deficits, and retirement savings were either (low, small,
high), (low, large, low), (high, small, low), or (high, large,
high) in the +++, + - -, - + -, and - - + conditions, respectively.

Table 3 presents examples of the causal relationships in the
domain of economics in the +++ counterbalancing condition.
The different variable values in the four counterbalancing con-
ditions required different causal relationships of course. For
instance, the relationship between interest rates and trade def-
icits was described as low → small, low → large, high →
small, and high → large in the +++, + - -, - + -, and - - + con-
ditions, respectively. The counterbalancing thus required the
use of 12 distinct causal relationships in each of the three
domains. See Appendix A of Rehder (2014a) for all the causal
relationships.

Table 2 Variables

Economics Meteorology Sociology

Interest rates Ozone levels Urbanization

(low+/high–) (high+/low–) (high+/low–)

Trade deficits Air pressure Interest in religion

(small+/large–) (low+/high–) (low+/high–)

Retirement savings Humidity Socio-economic mobility

(high+/low–) (high+/low–) (high+/low–)
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