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Abstract We start this paper by arguing that causality should, in analogy with force
in Newtonian physics, be understood as a theoretical concept that is not explicated by
a single definition, but by the axioms of a theory. Such an understanding of causality
implicitly underlies the well-known theory of causal (Bayes) nets (TCN) and has been
explicitly promoted by Glymour (Br J Philos Sci 55:779-790, 2004). In this paper we
investigate the explanatory warrant and empirical content of TCN. We sketch how the
assumption of directed cause—effect relations can be philosophically justified by an
inference to the best explanation. We then ask whether the explanations provided by
TCN are merely post-facto or have independently testable empirical content. To answer
this question we develop a fine-grained axiomatization of TCN, including a distinction
of different kinds of faithfulness. A number of theorems show that although the core
axioms of TCN are empirically empty, extended versions of TCN have successively
increasing empirical content.

Keywords Screening off - Linking up - Axioms for causal nets -
Inference to the best explanation - Empirical content

1 Introduction and formal preliminaries

Cognitive biologists tell us that causal reasoning is an evolutionary highly success-
ful characteristic of homo sapiens (Tomasello 1999). This diagnosis stands in stark
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contrast to the perennial difficulties philosophers had when trying to justify causality as

something ontologically real. According to Hume’s fundamental skeptical challenge,

the classification of correlated events into causes and effects doesn’t correspond to
anything real “out there in the world”—only the correlations are real, while causal-
ity is a mere habit of our cognitive system. Many philosophers have tried to answer

Hume’s challenge, but none of the current accounts of causality has become commonly

accepted.!

Most philosophical approaches have attempted to explicate the concept of causality
by means of definitions. According to Glymour (2004), this is a shortcoming. He com-
pares definitional (“Socratic”’) with axiomatic (‘“Euclidean’) approaches to causality;
the latter ones being exemplified in the theory of causal (Bayes) nets (TCN). Glymour
argues that axiomatic accounts are more fruitful than definitional ones. We agree with
Glymour and take his (2004) paper as our starting point. We suggest that causality
should, in analogy to the concept of Newtonian force, be understood as a theoretical
concept. Itis a characteristic property of theoretical concepts that their meaning cannot
be fully specified by a single definition, but only by the joint effect of the core axioms
of a theory. In case of force, this theory is Newtonian mechanics. We argue that in
case of causality, this theory should be TCN.

The paper is structured as follows. In Sect. 2 we propose an answer to Hume’s
challenge by providing a philosophical justification of causality (as axiomatized by
TCN) as something ontologically real by an inference to the best explanation (IBE)
for two statistical phenomena: screening off and linking up. In Sect. 3 we investigate
the question of whether TCN and various extended TCN-versions have independently
testable empirical content, i.e. exclude some logically possible probability distribu-
tions. The core principles of TCN (causal Markov and minimality) turn out to be
empirically empty. TCN-versions which additionally assume faithfulness or external
noise produce empirical content, which—on pains of avoiding falsification—is only
probabilistic in nature. More empirical content (including deductive content) is gained
by assuming temporal forward-directedness.

TCN has been developed by SGS (= Spirtes, Glymour, and Scheines) (2000) and
Pearl (1988, 2009), with forerunners such as Wright (1921), Reichenbach (1956),
Blalock (1961), and Suppes (1970). Our paper intends to contribute to this theory with
respect to the following points:

(1) Our understanding of causality as a theoretical concept axiomatized by TCN and
justified by its explanatory success is implicitly held by many proponents of TCN.
In Sect. 2 we go a step further by arguing that directed cause—effect relations as
axiomatized by TCN are the best explanation of two probabilistic phenomena:
screening off and linking up. We consider alternative explanations and highlight
their problems and disadvantages.

(2) In Sect. 3 we apply methods, originally developed within philosophy of science
for investigating the empirical (or non-theoretical) content of scientific theories,
to the theory of causal nets. We feel that this move constitutes a new and fruitful
enterprise within the TCN research program.

! For renewals of Hume’s challenge cf. Psillos (2009) and Norton (2009). For supporters of causality as
something real see Beebee et al. (2009, parts II and III).
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(3) From (2) we obtain a variety of results. Some of these results are technically
known, but their philosophical consequences are new or deserve reconsideration
(Theorems 1, 3, 4, and our distinction between “stable” versus “unstable” kinds
of unfaithfulness), while other results are also technically new (Theorems 2, 5, 6).

In the remainder of this section we introduce probabilistic (in)dependence, which
constitute the central empirical (or non-theoretical) concepts of TCN. We understand
(Humean) regularities in a broad probabilistic sense as probabilistic dependencies
(or correlations). We interpret probabilities of repeatable events as their dispositions
to occur with corresponding limiting frequencies—this interpretation is important
for our attempt to justify causal connections by their power to explain probabilistic
dependencies as objective features of the world (as opposed to subjective features of
beliefs). An intended consequence of this view is that causal claims involving singular
events have to be backed up by probabilistic regularities.

Our account makes use of mathematical variables. A variable is a function
X: D — Val(X) from a domain D of individuals to its value space Val(X) =
{x1, X2, ...}, which is a family of properties or a set of numbers. If X denotes color,
for example, then Val(X) = {red,green, ...} and X assigns a color X(d) to every indi-
vidual d € D. That d has color green may be expressed by “X(d) = x»”, where “x»”
stands for green. Note that properties or event-types are not variables, but values of
variables. We also admit that D consists of n-tuples of individuals, e.g. individuals at
certain time-points. Simple dichotomic property-pairs are represented by binary vari-
ables Xg with value space {F, —F} (e.g., {red, not-red }). We make use of the following
notational conventions:

— X.,Y,... are variables and U,V,W in bold letters are sequences of variables.

— Lower-case letters “x” (or “x;”) stand for values of X; lower-case “u” (or “u;”") for
sequences of values of variables in U, i.e. u € Val(U) = Val(X;) x - -- x Val(X})
ifU=X,...,Xn).

- P(X1,...X}) is a (statistical) probability distribution over a suitable algebra AL
over the space of values, i.e. P: AL(Val(X;) x --- x Val(X;)) — [0, 1].

— “P(x)” abbreviates “P({x})” and stands for “P(X(a) = x)”’; so P(x) is the proba-
bility that X takes value x in the underlying domain D.?

— “P(x € S)” abbreviates “P(X(a) € S)” (where S € Val(X)), i.e. the probability
that the value of X (in domain D) lies in the value-range S.

— “P(—x)” abbreviates “P(X(a) # x)”, “P(x,y)” abbreviates “P(X(a) = xAY(a) =
y)”, and

2 P(Xy) is defined from P(X1, . .., Xp) by the usual projection postulate. o in P(X(a) = x) is an individual
variable that is bound by the probability operator P (we use the letter “o” because “x” is reserved for X-
values). In the statistical interpetation, P(x) is the limiting frequency of result x in an infinite sequence of
random drawings of individuals a from D. This covers also the generic propensity interpretation, in which
one interprets P(x) as the limiting frequency of result x in an infinite sequence of performances of a random
experiment; here D consists of the individual performances of the experiment. In the single propensity
interpretation, in contrast, P is attached to individual events (such as this throwing of this coin); here P is
assumed as a primitively given function over AL(TTj<j<p Val(Xj)).
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— “P(x|y)” abbreviates “P(X(a) = x|Y (o) = y)”, i.e. the conditional probability of
X given y, provided P(y) > 0.3

Two variables X,Y are said to be probabilistically dependent (DEP(X,Y)) iff
at least some of their values are dependent; they are probabilistically indepen-
dent (INDEP(X,Y)) iff all of their values are independent. Thus, probabilistic
(in)dependence between variables can be defined by any one of the following equiv-
alent formulations (a)—(c):

(1) DEP(X,Y) iff
(a) Ix,y: P(x]y) # P(x) and P(y) > 0, or
(b) Ix,y: P(y|x) # P(y) and P(x) > 0O, or
(©) Ixy: P(x,y) # P(x) - P(y).

INDEP(X,Y) iff not DEP(X,Y), i.e. iff Vx,y: P(x]y) = P(x) or P(y) = 0 (with
equivalent formulations similar to the formulations above).

The equivalence of (a) with (b) makes clear that probabilistic dependencies are always
symmetric. Conditional (in)dependence between X and Y given variables Z1, .. ., Zy
is defined as follows:

(2) DEP(X,Y|Zy, ..., Zy) iff IXy,Z(,.... 200 P(X|y,Z, ..., 2Z0) # P(X|Z1, ..., Zn)
and P(y,z;,...,z,) > O (with equivalent formulations similar to the formula-
tions in (1)).

INDEP(X,Y|Z1, ..., Zy) iff not DEP(X,Y|Zy, ..., Zy).

Unconditional (in)dependence (IN)DEP(X,Y) coincides with (IN)DEP(X,Y|9),
where & is the empty set.

The definition of probabilistic dependence is generalized to sequences of variables
U,V,W via the following definition: DEP(U,V|W) iff Ju,v,w: P(u|v,w) # P(u|w)
and P(v,w) > 0.

DEP(X,Y) merely asserts the existence of dependencies between some values of X
and Y. These dependencies can be positive or negative and of arbitrary form and degree.
INDEP(X,Y), on the other hand, requires that all values of X and Y are independent.

Note that the notions of positive and negative probabilistic (in)dependence can,
prima facie, only be defined for values of variables:

(3) POSDEP(x,y) iff P(x]y) > P(x); NEGDEP(x,y) iff P(x|y) < P(x);
DEP(x,y) iff POSDEP(x,y) or NEGDEP(x,y);
INDEP(x,y) iff “DEP(xX,y).

However, we can define a notion of probabilistic dependence between variables
if their values are ordered according to size: in that case we say that a variable Y
is positively dependent on X iff an increased X-value leads to an increased mean or
expectation value of Y.

3 P(y) > 0is required because P(x|y) is defined as P(x,y)/P(y). If one wants to cover the case P(y) =0, one
may assume independently axiomatized conditional probabilities (cf. Pearl 2000, p. 11; Carnap 1971, 38f).
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2 Explanatory warrant of TCN: justifying causality by IBE
2.1 Causality as a theoretical concept: a comparison with Newtonian force

According to the findings of contemporary (post-positivistic) philosophy of science,
scientific theories contain theoretical concepts such as atom, force, etc.* Theoretical
concepts are neither definable in terms of observable phenomena—they offer unified
explanations of such phenomena in terms of hidden “deep structures” instead—, nor
are they definable by a single theoretical principle or axiom. Rather, their semantic
content is characterized by a theory, or at least by a theory core to which said concepts
belong. Classical physics, for example, stipulates gravitational forces as unobservable
causes of trajectories of physical bodies. The “meaning” of “gravitational force” is
not determined by a single definition, but by the joint effect of the synthetic axioms
of Newtonian mechanics which, when combined, entail a large variety of empirical
consequences. We suggest that causality should, in precise analogy to force, be under-
stood as a theoretical concept whose meaning can be explicated by TCN’s core axioms.
Thus, the empirical (or non-theoretical) part of TCN is the concept of a probability
distribution over a set of variables, whose properties are to be explained by assuming
theoretical cause—effect relations between these variables according to the principles
of TCN.

In order to be empirically significant, theoretical concepts and the principles char-
acterizing them must have the following two features:

(i) They offer unifying explanations of empirical phenomena which cannot be gen-
erated without them (explanatory warrant), and

(i) they are not entirely ex-post, but generate empirical predictions by which they are
independently testable (empirical content).

There is no guarantee that a theoretical concept refers to a really existing entity—
purely instrumental interpretations of theoretical concepts as useful means for unifying
empirical phenomena are always possible. But the more empirically successful a theory
becomes, the more plausible it is to assume that the theoretical concepts producing
this success actually do refer to something real. The concept of force in Newtonian
physics, for example, does have both features of empirical significance to an admirably
large extent—presumably, no physicist (and only a few philosophers of science) would
doubt that forces are real. In this paper we ask whether the concept of causality has the
two ingredients of empirical significance, explanatory warrant and empirical content.

In Sect. 2 we investigate the explanatory warrant of TCN. The decisive question
concerning TCN’s explanatory warrant is: What does causality explain? The answer
cannot be that every empirical regularity is explained by an underlying causal power.
Of course, for every regularity one can postulate a corresponding causal connection
that “explains” it post facto. But causal “explanations” of this sort would amount
to a mere metaphysical duplication of empirical regularities that can neither achieve
unification of regularities, nor generate novel predictions. Since they fail to meet (1)
and (ii), Ockham’s razor dictates to eliminate them.

4 Cf. Carnap (1956), Lewis (1970), Sneed (1971), Balzer et al. (1987), Papineau (1996), French (2008).
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Causality is also not needed to explain why observed regularities are inductively
projectible, as some philosophers have suggested (cf. Fales 1990, Chap. 4). The induc-
tive projectibility of regularities is already explained by assuming that they are backed
up by lawlike connections (Armstrong 1983, part 1). Causality, however, goes beyond
inductive projectibility or lawlikeness: regularities connecting the joint effects of a
common cause, for instance, may be perfectly lawlike though obviously non-causal.

To withstand Hume’s skeptical challenge one has to answer the question of why
cause—effect relations are needed at all, instead of simply accepting lawlike regularities
as primitive facts. Our answer is that cause—effect relations (as characterized by the
core axioms of TCN) yield the best available explanation for two otherwise mysterious
(in)stability properties of probabilistic regularities w.r.t. conditionalization: screening
off and linking up.

2.2 Explaining screening off and linking up

Since screening off and linking up are the major explananda of causal relations, we
have to characterize them in an empirical, i.e. purely probabilistic way, without pre-
supposing causal notions.

(4) X and Y are screened off by Z iff DEP(X,Y) and INDEP(X,Y|Z).

Examples:
(4.1) Barometer reading (X) storm coming (Y) atmospheric pressure (Z)
(4.2) Young male (X) car accident (Y) car speed (Z)

The probabilistic dependence between X and Y disappears when conditionalizing
on arbitrarily chosen but fixed values of a third variable Z. Condition (4) implies the
probabilistic dependencies DEP(X,Z) and DEP(Y,Z). We assume the usual case that
these dependencies are not themselves screened off by the respective third variable
(Y and X, resp.). Moreover, we focus on robust (or faithful) cases of screening off in
which the disappearance of the probabilistic X—Y dependence after conditionalization
on Z is stable under small changes of the involved conditional probabilities (we shall
see in Sect. 3.2 that most cases of screening off are robust in this sense.)

Intuitively we interpret the correlations in (4.1) and (4.2) immediately as produced
by causal relations: we believe that we “know” that screening off occurs because Z
is a common cause in (4.1) and an intermediate cause in (4.2). In order to achieve a
philosophical justification of causality we must free our mind from such prefabricated
causal intuitions and assume for a moment that we only know the variables’ probability
distributions. If we do that, we are confronted with a riddle: Why does the X-Y
correlation disappear when fixing Z’s value?

The best available explanation of robust screening off phenomena—in fact, the
only good explanation we can think of—is the following: only the two dependencies
between X and Z and between Z and Y reflect a direct “causal” connection between
the respective variables,” while the dependence between X and Y results from these

5 The claim that the causal connection between X and Z in Fi g. 1 is “direct” is relative to the set of variables
{X.Y.Z}.

@ Springer



Synthese (2016) 193:1073-1103 1079

X z Y

Fig. 1 Explanation of screening off by binary causal relations (dotted lines stand for probabilistic depen-
dencies and solid lines for direct causal connections)

two causal connections and, thus, is mediated (or transmitted) by Z. This situation is
depicted in Fig. 1. Hence, if we consider subsets of individuals with different X-values,
these individuals will have differently distributed Y-values only because they have
differently distributed Z-values. So if we conditionalize on a subdomain of individuals
with fixed Z-values, individuals with different X-values will no longer have differently
distributed Y-values, i.e. the probabilistic dependence will no longer be transmitted
from X to Y.

Note that explaining screening off only requires the assumption of an undirected
binary dependence relation between variables; we call this dependence relation
“causal” although no direction of causation is needed so far. Directed causation is,
however, required for discriminating screening off from linking up. Before we come
to this point, we show why prominent alternative attempts fail in explaining screening
off.

Firstof all, duplication accounts cannot explain screening off. They come in two ver-
sions: (i) Humean-reductionist (causality is “nothing but” correlation) and (ii) naive-
metaphysical (every correlation is “backed up” by a corresponding causal connection).
Duplication accounts would postulate a direct causal connection between every two
correlated variables X and Y, as shown in Fig. 2a. But then they cannot explain why
Z screens off X from Y; this fact would remain mysterious. It is precisely the assump-
tion that not all correlations correspond to direct causal connections which explains
screening off.

A second alternative explanation attempt would be the blocking account: Z can
influence the causal connection between X and Y in such a way that some Z-values
block this connection, as depicted in Fig. 2b. But this hypothesis cannot explain why
the X-Y correlation vanishes when conditionalizing on arbitrary Z-values. It seems
that the only explanation that works is the one given above: Z screens X off from Y
because Z mediates X’s dependence on Y.

A final objection might point out that it is impossible even to ask for an explanation
of screening off without already presupposing causal notions, because all explanations
are causal. However, we don’t understand the explanation of screening off in a causal
sense (for otherwise we would end up in an infinite regress). In accordance with many
philosophers of science, e.g. Friedman (1974) or Kitcher (1989), we assume that there
is a non-causal sense of “‘explanation” consisting in unification and the generation of
potential predictions.

X Z Y X Y
(a) (b)

Fig.2 a Duplication accounts cannot explain why DEP(X,Y) vanishes at all. b The blocking theory cannot
explain why DEP(X,Y) vanishes when conditionalizing on arbitrary Z-values
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Let us now turn to the question of how to explain linking up. Some sets of variables
{X,Y,Z} have probability distributions that feature exactly the opposite (in)stability
properties to screening off. We call this phenomenon “linking up” and define it again
in a purely probabilistic (i.e. non-causal) way:

(5) X and Y are linked up by Z iff INDEP(X,Y) and DEP(X,Y|Z).
Example: Angle of the sun (X) length of a tower (Y) length of its shadow (Z)

Two independent variables X and Y become linked up by Z iff they become depen-
dent after conditionalization on some values of Z. The position of the sun, for example,
is not correlated with the height of a tower, but it becomes correlated if we condition-
alize on the shadow’s length. If the tower’s shadow is long, for instance, we can infer
that the solar altitude must be low if the tower is short.® As in screening off scenarios,
(5) implies DEP(X,Z) and DEP(Y,Z). Again we focus on robust cases of linking up.

Let us once more put aside prefabricated causal intuitions. Then we face a second
riddle: Why do two formerly independent variables X and Y become correlated when
conditionalizing on certain Z-values? It is clear that undirected causal relations cannot
explain both screening off and linking up. To explain linking up, Z must again act as a
mediator between X and Y. So the structure of undirected causal relations in the linking
up scenario must have the same form as in the screening off scenario depicted in Fig. 1.
But if the causal structure should be able to explain both screening off and linking up,
it cannot have the same form in these two cases, because the two phenomena involve
opposite probabilistic (in)stability effects.

The best available explanation for screening off and linking up—again the only
good explanation we can think of—is to assume that causal relations are directed: In
what follows “X — Y” expresses that X exerts a causal influence on Y “directly”,
i.e. unmediated relative to the given set of variables V. The way this direct causal
influence is physically realized is left unspecified in TCN. However, two assumptions
are required that are precisely formulated in Sect. 2.3 and informally stated as follows:

Productivity (P): “Ceteris absentibus” (i.e. in the absence of intervening causal
influences)’ X — Y implies a probabilistic dependence between X and Y, and

Markov-causality (C): Probabilistic dependencies are the result of directed causal
connections, which transmit probabilistic influence from causes to effects, but not
from effects to causes.

We can now explain screening off and linking up phenomena as follows. In both

cases, Z mediates between X and Y. So we have three possible directed causal structures
as candidates for explaining these phenomena:

6 In the sun-tower-shadow example we can infer every Y-value from every X-value for every Z-value by
the equation Y = Z/tan(X). In other examples, X and Y become only correlated when conditionalizing on
certain values of the common effect Z.

7 More precisely, we must deactivate all other causal connections between X and Y and other causal
influences on Y; see Sect. 2.3, (9).
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(a) X > Z — Y (or X <« Z < Y) (“chain”): Z is an intermediate cause (between
X and Y).

(b) X <« Z — Y (“fork™): Z is a common cause (of X and Y).

(c) X - Z < Y (“collider”): Z is a common effect (of X and Y).

The first two arrangements explain screening off; the third one explains linking up.

Explaining screening off:

(a) Chain (X — Z — Y): Y depends on X because a change of X-values causes a
change of Z-values which, in turn, causes a change of Y-values (DEP(X,Y)).

(b) Fork (X <— Z — Y): Y depends on X because changes of X-values are caused by
changes of Z-values which also cause changes of Y-values (DEP(X,Y)).

In case (a) as well as case (b), X-value variations can lead to Y-value variations
only due to Z-value variations; thus fixing Z’s value renders X and Y independent
(INDEP(X,Y|Z)).

The logical structure of both explanations is as follows: from X — Z in case (a), or
from Z — X In case (b), we infer DEP(X,Z) by (P); likewise we infer DEP(Z,Y) from
Z—Y and (P). INDEP(X,Y|Z) follows directly from (C) and causal structures (a)
and (b). For explaining DEP(X,Y) we must additionally assume that the dependencies
DEP(X,Z) and DEP(Z,Y) are transitive in the sense that they result in DEP(X,Y). To
this end it is necessary and sufficient that the causal models (a) or (b), resp., satisfy the
following condition of dependence transitivity (DT):® 3x,y: YsevaizyP(ylz) -P(z]x) #
Yzeval(z)P(y(2) - P(2).

DEP(Y,Z) and DEP(Z,X) imply that P(y|z) # P(y|—z) holds for some y and z, and
that P(z|x) # P(z|—x) holds for some x,z. So condition (DT) can only be violated
when positive and negative changes of certain terms “P(y|z) - P(z|x)” in the left sum,
compared to the corresponding terms “P(y|z) - P(z)” in the right sum, cancel out to
zero. Hence a violation of condition (DT) occurs only in rare cases that correspond
to non-robust (unfaithful) causal scenarios. In other words, condition (DT) is not only
needed to explain screening off, but also intrinsically plausible.

Explaining linking up:

(c) Collider (X — Z < Y): Y doesn’t depend on X because a change of X-values
causes a change of Z-values which, however, isn’t accompanied by a change of Y-
values because value-changes are not transmitted from an effect to its cause. Fixing
Z to certain values will render X and Y dependent (DEP(X,Y|Z)), as explained in the
sun-tower-shadow example (5).

The logical structure of this explanation starts again with the observation that by
(P), X - Z and Z <« Y imply DEP(X,Z) and DEP(Z,Y), respectively. By (C), no
probabilistic influence of a cause X on its effect Z can be transmitted to Z’s other cause
Y; so “ceteris absentibus” X and Y are probabilistically independent, i.e. INDEP(X,Y).

8 Proof By probability theory we have (a) P(y|x) = £,P(y|x,z) - P(z|x) and (b) P(y) = Z,P(y|z) - P(2).
The sum in (a) equals (c) £,P(y|z) - P(z|x) by condition (C) of Sect. 2.3, since Y is not d-connected with
X given Z. It follows that P(y|x) # P(y) holds exactly if the two sums in (c) and (b) are unequal. O
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+ Z + + Z +
X/ _\Y X/_\;Y
(a) (b)

Fig. 3 Unfaithfulness due tot canceling paths: a explains non-robust screening off (DEP(X,Y) and
INDEP(X,Y|Z)); b explains non-robust linking up (INDEP(X,Y) and DEP(X,Y|Z))

In order to explain DEP(X,Y|Z) it suffices to assume that the causal model (c) satisfies
the following condition of dependence overlap (DO):” 3x,y,z: Dep(y,z) A Dep(z,x).'°

A violation of condition (DO) would not be robust against minimal changes of
the involved conditional probabilities. So, again, the satisfaction of (DO) is not only
needed to explain linking up, but also intrinsically plausible.

With help of directed arrows, we are able to explain even certain non-robust cases
of screening off and linking up. A non-robust scenario in which Z screens off X from
Y could, for example, be explained by the causal structure in Fig. 3a: the positive
conditional dependence due to X —T Z T <~ Y and the negative dependence due to
X —7Y cancel out to zero. Thus, DEP(X,Y) and INDEP(X,Y|Z), though Z is a
common effect of X and Y. In Sect. 3.2 we call this situation unfaithfulness due to
canceling paths. Unfaithful independencies are not robust, since small changes of
the involved conditional probabilities turn them into dependencies. An analogous
alternative explanation can be given for the non-robust linking up case in Fig. 3b, in
which the positive dependence due to X —TZ —71 Y and the negative dependence
due to X —~ Y cancel out to zero.

We finally remark that two independent variables X and Y may not only be linked
up by common effects, but also by effects of common effects. An example is illustrated
in Fig. 4: assuming iterated (DT) Z,P(y|x,Z,z) - P(z|x,2)) # Z,P(y|Z,z) - P(z|2)), X
and Y will be dependent conditional on 7.

9 Proof By probability theory, (a) P(x|y) = P(x]y,z) - P(z|y) + P(x|y,—z) - P(—z|y) and (b) P(x) = P(x|z) -
P(z) + P(x|—z) - P(—z). By INDEP(X,Y) we have P(y|x) = P(y). So the sums in (a) and (b) must be equal.
These sums are weighted averages, with the weights in the sum in (a) being P(z|y) and P(—z|y) = 1—P(z]y),
and the weights in the sum in (b) being P(z) and P(—z) = 1—P(z). By (DO) we have (i) P(z]y) # P(z|—y)
and (ii) P(x|z) # P(x|—z). It follows from (i), (ii), and the laws of weighted averages that the two sums in (a)
and (b) would have to be different if INDEP(x,y|Z), i.e. P(x|y,z) = P(x|z) and P(x]y,—z) = P(x|—z), would
hold. Forifa#band w#w, thena-w+b-(1—w) = (a—b)-w+b £ a-w +b-(1-w') = (a—b)-w +b.
Thus either P(x|y,z) # P(x|z) or P(x|y,—z) # P(x|—z) must hold, which gives us DEP(X,Y|Z). O
10 Condition (DO) is sufficient but not necessary for DEP(Y,X|Z) in linking up cases (it can be shown that
a necessary condition for DEP(Y,X|Z) is 3x,y,z : DEP(y,z|x) A DEP(z,x|y)). On the other hand, condition
(DO) is not sufficient but necessary for DEP(Y,X) in screening off cases (we are indebted to an anonymous
reviewer for pointing this out to us). Here is a proof of the necessity-claim by contraposition (—(DO) =
INDEP(X,Y)). Assume that (DO) fails (in one of the causal structures X — Z — Y, X < Z <« Y,
or X <— Z — Y). Thus P(z|ly) = P(z) holds for every z with P(x|z) # P(x|—z). Let Zy be the set of
Z’s values that are Y-independent but X-dependent, and Zx the set of Z’s values that are X-independent
but Y-dependent. Then P(x]y) = X,P(x|z) - P(zly) = Z,ezyP(x|z) - P(zly) + Z,e7xP(x]2) - P(zly) =
(by our assumptions) £,e7y P(x|2) - P(2) + £,e7xP(x) - Ply) = ZyezyP(x,2) + PR)Z,ezxPlzly) =
(*)P(x,z € Zy) + P(x) - P(z € Zx|y). By our assumption, P(y|z € Zy) = P(y) holds, which implies
P(z € Zyly) = P(z € Zy). This implies P(z € Zx|y) = P(z € Zx) (via P(z € Zx|y) = |-P(z € Zyly) =
1—-P(z € Zy) = P(z € Zx)), which in turn implies P(x) - P(z € Zx|y) = P(x) - P(z € Zx) = P(x, z € Zx).
So we continue as follows P(x|y) = ... (¥) = P(x, z € Zy) + P(x, z € Zx) = P(x). Thus, INDEP(x,y).
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X—>Z<«<—Y

Fig.4 Xand Y are linked up by 7/

Summarizing, we argued that the best available explanation for robust as well as
for non-robust cases of screening off and linking up is to assume that probabilistic
dependence between variables is mediated by directed binary causal relations which
obey (C) and (P). Thus, causation as characterized by (C) and (P) can be justified as
ontologically real by an inference to the best available explanation (IBE).

We see the major advantage of the proposed justification in the fact that it neither
presupposes advanced concepts of physics nor strong metaphysical assumptions. It
rather justifies causality on the basis of ordinary phenomena in everyday life. In par-
ticular, we experience screening off and linking up in all kinds of purposeful actions.
Here our actions (A) realize certain means (M) in order to produce certain purposes
(P) (A — M — P); so DEP(A,P), but M screens off A from P, i.e. our actions cannot
reach their purposes without realizing certain means. Moreover, if a purpose P can be
achieved by two independent means M and M3, then the achievement of purpose P
links up M; and M» (if M; was not applied, M» has been applied). These facts help
to explain why causality is an inborn reasoning mechanism of homo sapiens which is
closely connected to interventions.

Let us finally compare our IBE justification strategy with the well-known fork
asymmetry argument. This argument, which goes back to Reichenbach (1956, pp.
159-161) and has been elaborated by Papineau (1992), runs as follows: Assume X,Y
are two events both correlated with a third event Z. Then either (a) X and Y are
mutually correlated and Z screens them off: then Z is a common cause of X and Y.
Or (b) X and Y are uncorrelated: then Z is a common effect of X and Y. Note that
this justification strategy has gaps. As Papineau (1992, p. 240) observes, the argument
doesn’t work if X and Y can causally reach each other; Reichenbach excluded this
case by assuming that X and Y are temporally simultaneous. Another gap is the third
possible case (c) in which X and Y are correlated but Z doesn’t screen them off,
because X, Y, and Z are joint effects of a common cause C. In contrast, our proposed
justification strategy doesn’t suffer from these restrictions. It is not based on the fork
asymmetry, but on the asymmetry between screening off and linking up, which is not
considered by Reichenbach or Papineau.

2.3 The core axioms of TCN: causal Markov (d-connection) and productivity
(minimality)

We now present the concise statement of the axioms of d-connection (C) and pro-
ductivity (P) that have been justified by an IBE in Sect. 2.2. (C) and (P) constitute
TCN’s core and are traditionally expressed by the equivalent causal Markov condition
(M) and the minimality condition (Min), respectively (SGS 2000, Sects. 3.4.1-3.4.2).
We prefer (C) and (P) over (M) and (Min) because they are philosophically more
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transparent and are better suited for investigating TCN’s empirical content than (M)
and (Min). Before we explicitly state (C) and (P), we have to introduce the following
notions. A causal graph (or structure) is a pair (V,€), where V is a set of variables
(the “vertices”),and £ C V x V is a set of directed arrows X; — X (i.e. ordered pairs,
the “edges”). A graph (V, &) together with a probability distribution P over V is called
a causal model (or system) (V,E,P). Causal structures and systems are parts of the
world, while causal graphs (CGs) and models (CMs) are conceptual representations
of causal structures and systems, respectively. Some further important notation:

— X — Y: Xis adirect cause of Y (Y is a direct effect of X).

— X —— Y: Xis a (direct or indirect) cause of Y (Y is an effect of X), i.e. there is
adirectedpathX - Z; — --- > Z, — Y from X to Y.

- X=Y: X—> YorX « Y,ie. Xand Y are adjacent.

— X1——Xy: a path X1 — --- =X, between X and X; this path connects X; and

X5, and the variables Xj(1 < i < n) lie on this path.

If X lies on a path 7, then X; is called (i) a common cause, (ii) an intermediate

cause, or (iii) a common effect on 1 iff (i) < X —, (ii)) = X — or < X <, or

(iii)) — X <, respectively, is part of 7.

The principle of d-connection says that every (conditional) probabilistic dependence
between two variables X and Y is the result of some causal path connecting them. The
correct formulation of this principle has to account for all possible combinations of
screening off and linking up along all paths connecting X and Y. If path 7 connects
X and Y in a graph (V, &), then 1 can generate probabilistic dependence conditional
on a (possibly empty) subset of variables U € V—{X,Y} only if no common or
intermediate cause on T is in U and all common effects on 7 are in U or have an
effectin U. If X and Y are connected in a graph (V, ) by several paths, then X and Y
become dependent iff at least one of these paths generates a probabilistic dependence.
These considerations are summarized in the following axiom of d-connection (C):

(6) Axiom ofd-connection (C): Every physically possible CM (V,&€,P) [inan intended
domain] satisfies the condition of d-connection (C), which is defined as follows:
For all X,Y € Vand U € V—{X,Y}: If DEP(X,Y|U), then X and Y are d-
connected given U in the following sense:

X and 'Y are connected by some path 7 such that no intermediate or common cause
on 7 is in U, while every common effect on 7t is in U or has an effect in U. (In this
case we say that X and Y are d-connected given U by m.)

Note that in (6) we distinguish between the definition of the d-connection condition
(which is a property that a causal model may or may not have) and the corresponding
axiom of d-connection, which states that this condition holds for all physically possible
causal models in an intended domain. In what follows, when we simply write “(C)”
we always mean the condition of d-connection, while when referring to the axiom of
d-connection we will explicitly write “axiom (C)”. We assert axiom (C) for physically
possible (rather than only for actual) causal models since the causal systems in our
world and their probability distributions may change over time.

Condition (C) entails the following well-known principle of
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(7) Unconditional dependence: If DEP(X,Y), then X and Y are connected by a directed
or common cause path (i.e. d-connected given &).

If X and Y are connected by a path 7, then U is said to activate 7 iff X and Y are
d-connected given U by =, while U blocks T iff X and Y are not d-connected given U
by 7. If X and Y are not d-connected given U, X and Y are said to be d-separated by U.
The concepts of d-separation and d-connection have been developed by Pearl (1988,
p. 117). (C) asserts an implication from probabilistic dependence to d-connection—or,
in contraposed form, an implication from d-separation to independence, which is the
formulation used by Pearl (1988, p. 119; 2000, Theorem 1.2.4). (C) is equivalent with
two famous conditions, the causal Markov condition and Markov-compatibility (cf.
Pearl 2009, p. 16; SGS 2000, 29f). In the following par(X) is the set of X’s parents,
i.e. the direct causes of X in the given causal graph:

(8) Definition of the causal Markov condition (M) and of Markov-compatibility (MC):

8.1) (V,E&,P) satisfies (M) iff every X € V is independent of all of its non-effects
(different from X) conditional on its parents, i.e. INDEP(X,U|par(X)) holds for
every subset U € V—{X} of non-effects of X.

8.2) ({X1, ..., Xn},E,P) satisfies (MC) iff P(Xq, ..., Xy) =1 <i<nP(Xi|par(X;)).

SGS (2000, Sects. 3.4.1-3.4.2) prefer (M) as the core of TCN. The equivalence of
(M) and (MC) is well known (e.g. Pearl 2009, p. 19, Theorem 1.2.7); the product at the
right of “="1in (8.2) is called the Markov-factorization of the CG ({X{, ..., Xy}, E,P).
Deeper is the equivalence between (M) and (C), which has been demonstrated by
Verma (1986), Pearl (1988, 119f, Theorem 9, Corollary 4), and Lauritzen et al. (1990,
p- 50), who call (C) the global and (M) the local Markov condition (see also SGS,
p- 46, Theorem 3.3; Pearl 2009, p. 18, Theorem 1.2.4). For an intuitive grasp of the
relation between (C) and (M), observe that (in its contraposed form) (C) asserts a
(conditional) independence for all d-separation relations of a causal graph, while (M)
asserts such an independence only for the d-separation relations between a variable
X and its non-effects conditional on its parents; the other independencies follow from
these as probabilistic consequences. On this reason, (C) expresses the full content of
the causal Markov condition in a much more direct way than (M), whence we prefer
reference to (C) over reference to (M) in the first core axiom of TCN.

Note that the equivalence of (C) and (M) holds only for acyclic causal graphs, i.e.
CGs not containing cyclic paths X —— X.!'! Moreover, the equivalence of (C) with
(MC) presupposes finiteness of V:

Theorem 1 For every acyclic finite CM: (C), (M), and (MC) are pairwise equivalent.

Under the assumption that causation is forward-directed in time, cyclic CGs are
impossible. However, directed causal dependencies appear to hold also between tem-
porally coexisting properties of stationary systems: the length of a pendulum, for
example, is a cause of the pendulum’s frequency. To avoid misunderstandings, a causal
arrow between two coexisting variables of a stationary system should not be under-
stood as an instantaneous physical interaction. It rather refers to a causal process that

11 Ap example of a cyclic CG violating (C) < (M) is found in Spirtes et al. (1993, 359f.).
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goes on in a given finite time interval. More importantly, it implies an intervention
asymmetry: one can change the value of the effect variable by changing the value of
the cause variable, but not vice versa.

In special cases, the causal dependencies between coexisting properties of stationary
systems may be cyclic. Examples are self-regulatory systems containing feedback
loops, e.g.: outside temperature — room temperature — thermostat. (On the explained
reason such causal cycles are not in conflict with the temporal forward-directedness
of causal processes.) While (M) makes only good sense for acyclic graphs, (C) is also
reasonable for cyclic graphs (cf. Spirtes et al. 1993, p. 359). In this paper, however,
we focus on acyclic CGs.

The distributions P(X|par(X)) are called the causal model’s parameters.'? In acyclic
models, these parameters can be varied independently from each other without destroy-
ing the independencies entailed by (C).!3

We understand axiom (C) and the equivalent axiom (M) as synthetic (i.e. not ana-
lytically true) principles whose content can be true or false in the realistic sense.'*
These axioms assert that (C) holds for most physically possible worlds or physically
closed systems (universes). Moreover, (C) provably holds for every subsystem of a
(C)-satisfying causal system (V,E,P) that is causally sufficient, i.e. that doesn’t omit
any true and non-degenerate common cause of variables in V (cf. SGS, p. 22).

SGS (2000, p. 29) speak of conditions (C) and (M) likewise as of “axioms”, but
present them in the form of definitions; Pearl (2009) only states the definitions. The
explicit formulation of axioms impels us to critically reflect the problem of generality:
do really all correlations result from causal connections? The justification of causality
by an IBE in Sect. 2.2 works only for correlations that participate in relations of screen-
ing off or linking up. We argued that all correlations that can be utilized by means
of interventions participate in screening off and/or linking up relations—however, not
all correlated variables can be intervened on. Possible failures of the causal Markov
condition have been discussed in the context of EPR-correlations in quantum mechan-
ics, in which the correlated states of two entangled particles are not screened off by
common causes, though they cannot be explained by a direct causal connection due
to relativity theory (cf. Hausman 1998, p. 252; Healey 2009). Cartwright (2007, p.
122) argues that similar problems may even arise in ordinary (macroscopic) domains.
Well-taken defenses against these objections have been given by the proponents of
TCN (SGS 2000, pp. 59-63; Pearl 2009, p. 62; Hitchcock 2010), though not all prob-
lems are solved by these defenses and the debate is ongoing. In this paper we don’t
take up a stance on whether (C) is strictly general or holds only in certain domains.
To account for the latter possibility we added “[in an intended domain]” in axiom
(C). Yet we will have something significant to say about the arguments concerning

12 These parameters can equivalently be formulated as functions X = f(par(X))+ Uy together with arandom
distribution P over mutually independent error variables Uy (Pearl 2000, p. 44). If the causal influences
are non-interactive and linear, one can factorize the parents’ influences in the form of a structural equation
model, X = EPiepar(X)Ci -P; + Ux (SGS, 14f).

13 This follows from MCO).

14 Also Pearl (2000, preface) and SGS (Chaps. 3.4-3.5) support a realistic understanding of causal relations.
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TCN’s confirmation status in Sect. 3.1, when we discuss the philosophically puzzling
consequences of the fact that TCN’s core axioms are empirically empty.

Axiom (C) asserts that a probabilistic dependence implies a causal connection.
The second core axiom, (P), asserts that the other direction, from causal connection
to probabilistic dependence (or from independence to causal separation), holds under
special conditions: a direct causal connection implies ceteris absentibus a probabilistic
dependence. (P) holds only under certain conditions because unfaithful structures due
to canceling paths (Fig. 3, Sect. 2.2) cannot be excluded a priori. Another kind of
unfaithfulness is unfaithfulness due to canceling parents. It arises when two causal
parents interact in such a way that their influences on their joint child cancel each other
(see Fig. 5). Pearl (1988, p. 256) gives an illustrative example: a bell Y rings iff two
randomly tossed coins X and Z both land heads or tails: Y = 1 < (X = Z). Thus,
X =1 influences Y =1 positively if Z=1 and negatively if Z=0, where these two
influences cancel each other, since P(Y = 1| X =1) =P(Y =1|Z=1) = P(Y =
1) =0.5.

We can isolate X’s causal influence on Y from the influence of possibly canceling
paths or parents by blocking this influence via conditionalization. In acyclic causal
structures this can be done by conditionalizing on Y’s parents (different from X). So
we explicate the axiom of productivity as follows, where (as in the case of (C)) we
distinguish between the condition (P) and the axiom (P):

(9) Axiom of productivity (P): Every physically possible CM (V,&,P) [in an intended
domain] satisfies the condition of productivity (P), which is defined as follows:
DEP(X,Y |par(Y)—({X}) holds for all X — Y in £.

Lemma 1 For every acyclic CG (V,E,P) satisfying (C): If X — Y in E, then:

(1.1) par(Y)—{X} d-separates X from Y in (V,E—{X — Y}).
(1.2) If DEP(X,Y|U) holds for some U D par(Y)—{X} that d-separates X from Y in
V,E—{X — Y}), then DEP(X,Y|par(Y)—{X}).

Lemma 1.1 justifies definition (9) for acyclic graphs (Proof see Appendix). (In

cyclic graphs, suchas X — Y — Z, the conditioning set may have to include further
nodes, e.g. X’s parent Z, in order to isolate the dependence generated by X — Y.)
Lemma (1.2) provides additional information about condition (P) (note that the only-if
direction of (1.2) holds trivially).

In distinction to the first core axiom, axiom (P) is justified by a methodological
requirement: in order to be empirically significant, causal arrows must be responsi-
ble for at least some (conditional) probabilistic dependencies; causal arrows without
empirical effects are eliminated by Ockham’s razor.

Z

l

X—»Y

Fig.5 Unfaithfulness due to canceling parents: INDEP(X,Y), INDEP(Z,Y), INDEP(X,Z), but DEP(X,Y|Z)
and DEP(Z,Y|X)
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Given (C), (P) is equivalent with the well-known minimality condition (Min) (SGS
31):

(10) Definition: A (C)-satistying CM (V,£,P) is minimal (i.e. satisfies (Min)) iff no
arrow can be omitted from £ without violating condition (C), i.e. every submodel
(V,&',P) with &' C & violates (C).

Theorem 2 For all finite acyclic CMs satisfying (C): (Min) and (P) are equivalent.

The notion of productivity and Theorem 2 are new; its proof is stated in the appen-
dix (the condition of finiteness in Theorem 2 could be relaxed, but only on the cost of
a much more complicated proof). The advantage of (P) over (Min) is twofold. First,
(Min) tells us only that every arrow X — Y is needed to explain some dependence
within the given CM, while (P) states this dependence explicitly. Second, (P) is inde-
pendent of (C), while (Min) presupposes (C). This does not only hold for minimality
as defined in (10), but also for Zhang and Spirtes’ (2011, p. 182) definition: “If (C)
holds in the given CM, then (C) holds in no £-contraction of this CM.” According to
this definition every model violating (C) would trivially be minimal, which is certainly
not intended. In contrast, (P) does also make sense in case of (C)-violating CMs, such
as quantum-mechanical models with common causes not screening off their effects.
While (Min) cannot be sensibly applied to such cases, (P) may either hold or be
violated.

3 Empirical content of TCN

In Sect. 2 we showed that TCN is needed to explain screening off and linking up.
In order to be empirically significant, these explanations should not be entirely post
facto, i.e. TCN should not be compatible with every logically possible probability
distribution. In other words, TCN should have empirical (or non-theoretical) content.

In investigating TCN’s empirical content we follow the analogy between causality
in TCN and force in classical physics mentioned in Sect. 1. As the total force law
(sum of forces = mass - acceleration) and the actio-equals-reactio law constitute the
core of classical physics, axioms (C) and (P) constitute the core of TCN. But there are
further general principles, such as faithfulness (F), the external noise condition (EN),
and temporal forward-directedness (T), which are introduced in Sects. 3.1 and 3.2.
These principles constitute extended versions of TCN just like the law of gravitational
or frictional force constitutes extended versions of Newtonian physics.

In regard to the question of empirical content it is important to distinguish between
the empirical content of the general theory TCN and the empirical content of particu-
lar CMs of TCN. CMs describe particular applications of TCN in TCN’s theoretical
language, i.e. in terms of causal models. This is analogous to the distinction between
the general force theory of classical physics and particular force models such as a sun-
planet-system. Axiom (C) generates empirical content for particular CMs by entailing
probabilistic independencies. The inverse inference from empirical probability dis-
tributions (V,P) to CMs is more difficult, since it faces the problem of empirical
underdetermination: the same probability distribution may be explainable by more
than one causal structure satisfying TCN’s core axioms. A lot of work in the theory
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of causal nets has been concerned with this causal inference problem. But even under
conditions under which this inference problem is solved and the inference from a
given distribution to a CM is unique, TCN’s causal explanations could still be without
empirical content.

In other words, the problems of causal inference and empirical content are largely
independent. According to our knowledge, the problem of TCN’s empirical content
has so far not been investigated by logical means. TCN has empirical content iff it
excludes some analytically possible empirical models. A non-theoretical model is a
pair (V,P) of a set of variables V together with a probability distribution P over V.
A non-theoretical model (V,P) is empirical if V is a set of empirically measurable
variables. An empirical (or non-theoretical) model (V,P) is called an empirical (or non-
theoretical) submodel of a CM (V',E',P') iff V € V' and P = P’'1V (the restriction
of P’ to V).!> We also say that (V',E’,P) expands (V,P). We define:

(11) Empirical (non-theoretical) content for TCN: A version of TCN has empirical
(or non-theoretical) content iff there exists a logically possible empirical (or non-
theoretical) model that cannot be expanded to a CM satisfying this version of
TCN.

If TCN did not have empirical content, the content of all particular CMs would be
entirely ex-post. For any empirical model (V,P) one could then invent a “causal expla-
nation” in accordance with TCN, i.e., a TCN-model (V',€’,P’) that expands (V,P).
If this were the case, TCN would be exposed to the objection of being superflu-
ous “causal metaphysics”. It would then be impossible to predict a new probabilistic
(in)dependence Ry4+; which is not probabilistically entailed by the already known
(in)dependencies Ry, ..., R, by means of TCN.

3.1 Empirical content of TCN’s core: causal Markov, productivity, and acyclicity

We start with the question whether TCN’s core has empirical content. Our result, stated
in Theorem 3, is negative: (C) + (P) alone don’t have empirical content, not even when
adding acyclicity:

Theorem 3 Every analytically possible empirical (or non-theoretical) model (V,P)
can be expanded to an acyclic CM (V',E',P’) satisfying (C) and (P).

Theorem 3 follows from a well-known property of Bayesian nets (cf. Pearl 2009,
p- 14). For every ordering X1, ..., X; of the variables in V, (*) P(Xy,....X,) =
IM<i<nP(Xi|X1, ..., Xi—1) is probabilistically valid, where (*) holds for all value-
instantiations X, ..., Xy of X, ..., Xp. By excluding those X; from which Xj(1 <
j <i—1) is probabilistically independent in each term P(X;| X1, . .., Xj—1) in (*), one
obtains the so-called “Markovian parents” mp(X;) of Xj w.r.t. the ordering X1, . . ., Xj.
(Note that the Markovian parents are defined for every given ordering of variables,
so they need not be the “true” causal parents.) By drawing a CG whose arrows point

15 Empirical submodels correspond to what is called “partial (potential) models” in structuralist philosophy
of science (cf. Balzer et al. 1987; Sneed 1971, Chap. 3).
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from each member of a non-empty parent-set mp(Xj) to Xj, one obtains an acyclic
minimal (C)-satisfying CM.

Technically, Theorem 3 is unspectacular. Its philosophical consequences, however,
deserve a critical reflection, in particular w.r.t. the philosophical debate on the empirical
confirmation status of the equivalent causal Markov condition (M). Proponents of
TCN have argued that (M) is satisfied by all (or most of all) known empirical and/or
technical systems (cf. SGS 2000, p. 29; Pearl 2009, 62f; Hitchcock 2010, Sect. 3.3).
However, since TCN’s core axioms are empirically empty (Theorem 3), it is impossible
to confirm axiom (C) without additional assumptions—but no additional assumptions
are stated in the cited passages. The same problem applies to critics of axiom (C):
to turn their examples into counterexamples to axiom (C), they must make further
assumptions about causality. In the example of acommon cause structure X <~ Z — Y
in which Z doesn’t screen off X from Y (e.g. Cartwright 2007, p. 122), these additional
assumptions are usually causal sufficiency (no hidden common causes of X and Y)
and separation (the joint effects are not causes of each other). Even if such additional
assumptions were to be explicitly stated, their content when added to TCN is not
obvious. We therefore think that investigating TCN’s content is an important task for
the TCN research program.

Is it a problem that TCN’s core is empirically empty? Not necessarily. It is rather
typical for scientific theories that their cores are empty. Sneed (Sneed 1971, p. 126)
has demonstrated with scrutiny that, for example, the core of classical physics, the
total force law, is empirically empty. For every system of (point) masses with given
accelerations one can construct force functions that satisfy the total force law. However,
it is also well-known that the empirical content of general classical physics abruptly
increases when special force laws (e.g. the law of gravitational force) are added. Do we
meet a similar situation in case of TCN? This is the question of the next two sections.

3.2 Empirical content of faithfulness and noise assumption

(C) asserts that probabilistic dependence implies d-connection. (P) asserts the inverse
implication relation under very restricted conditions. The full content of the inverse
implication is called the faithfulness condition (cf. SGS 2000, p. 31):

(12) Definition of the faithfulness condition (F): (V,E,P) satisfies (F) iff (V,E,P)
satisfies the converse of (C): if X and Y are d-connected given U € V—{X,Y},
then DEP(X,Y|U).

In other words, a CM is faithful iff P verifies only those probabilistic independence
relations that are implied by (C). SGS (ibid.) define “faithfulness” as the conjunction
of (C) and (F). We prefer our definition (which Zhang and Spirtes 2008, p. 247 also
use), because it logically separates (F) from (C). This is important because there are
several possibilities for (F) to be violated. For this reason we don’t introduce (F) as an
axiom, but a probabilistic weakening of (F) (see below). It is easily seen that:

(13) Faithfulness implies productivity.

For assume (V,&,P) does not satisfy (P). Then there is an X — Y in £ such that
INDEP(X,Y|par(Y)—{X}). But since X and Y are d-connected given par(Y)—{X} in
WV,&), (V,E,P) is not faithful.
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Faithfulness is much stronger than productivity. Contrary to (P), (F) has various
exceptions. (F) may be violated because of special and usually rare features of given
probability distributions. We call an independence INDEP(X,Y|U) ina CM (V,E,P)
an unfaithful independence iff U d-connects X and Y in (V,£). For formulating an
empirically tenable “axiom” of faithfulness, it is useful to distinguish three types of
unfaithful independencies:

(1) Cancelation unfaithfulness: This type has been explained in Sect. 2.2. It has two
subtypes: (1.1) Unfaithfulness due to canceling paths (Fig. 3a, b), and (1.2) unfaith-
fulness due to canceling parents (Fig. 5).

(2) Determinism unfaithfulness: The value x of a variable X depends deterministi-
cally on a set of values w, abbreviated as “det(x:w)”, iff P(x|jw) € {0, 1} holds; x
depends deterministically on a set of variables W iff det(x:w) holds for all W-values
w. Determinism unfaithfulness can arise when X and Y are d-connected by a path «
given U, but INDEP(X,Y|U) holds because 7 carries a variable Z* (possibly identical
with X or Y) and all values z* of Z* which transmit probabilistic influence from X
to Y are deterministically dependent on some variable Z € U (SGS 2000, 53ff). An
example is the causal model X — Z — Y <« Z’ in which det(y:Z’) holds for all
y with DEP(X,y); in this case we get INDEP(X,Y|U = {Z'}), though X and Y are
d-connected given U.

(3) Intransitivity unfaithfulness: Here the unfaithfulness independence is produced
by dependencies between adjacent pairs of variables that are not transitive. In the
simplest case they arise from a non-overlap of dependence-sensitive values: here all
adjacent nodes on a path X; — ... — X, are dependent (DEP(Xj,Xj+1|U)), but this
dependence is not transmitted from X; to X, (INDEP(X1,X;|U)) because the value-
pairs (xj,Xi+1) in which the adjacent variables are dependent don’t yield an overlapping
chain (xg, ..., Xp). A simple exampleisachain X —- Z — YorforkX < Z — Y
in which Z has four values, but X depends on Z only over {z{, z;} and on Y only
over {z3, z4}, i.e. P(zi|X) # P(z) iff i € {1,2} and P(zi|Y) # P(z) iff i € {3,4}).
In this case, —3x,y,z: DEP(x,z) A DEP(z,y) holds, i.e. condition (DO) of Sect. 2.2 is
violated, which implies INDEP(X,Y), as proved in fn. 10. Intransitive dependencies
may also arise in a common effect structure X — Z <— Y: here —3x,z,y: DEP(x,z) A
DEP(z,y) implies INDEP(X,Y|Z) (see the proof in fn. 10). More complicated cases
of intransitive dependencies may obtain in chain or fork structures which arise in
spite of condition (DO) (Néger (this volume) calls them “internal canceling paths”).
Moreover, intransitive dependencies may also arise for chains of arbitrary length
(Zhang and Spirtes 2008, p. 253).

It is easy to see that axiom (C) together with the faithfulness condition (F) have
empirical content. A result of this kind can be found in Zhang and Spirtes (2008, p. 253),
though not in terms of content, but in terms of “detectable kinds of unfaithfulness”.
The authors define the unfaithfulness of a given (C)-satisfying causal model (V,E,P)
as detectable iff its non-theoretical submodel (V,P) cannot be expanded into a causal
model (V,E’,P) satisfying (C) + (F). Zhang and Spirtes’ theorems imply the following
results for the empirical content of (C) 4 (F):
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Theorem 4 (C)+(F) have empirical (or non-theoretical) content: No empirical (or
non-theoretical) model (V,P) with {X,Y,Z} < 'V verifying the logically possible
(in)dependence relations in (4.1) or (4.2) can be expanded to a CM (V' ,E',P):

(4.1) (a) YU C V—{XY}: DEP(X,Y|U) A DEP(Y,Z|U), and (b) there exist two
distinct sets W, W' CV — {X,Z} with Y € W but Y ¢ W' which screen off X
from Z.

(4.2) INDEP(X,Y), INDEP(Y.Z), INDEP(X,Z), DEP(X,Y|Z), DEP(Y.Z|X),
DEP(X,Z|Y).

Theorem 4.1 follows from our previous results and the results in Zhang and Spirtes
(2008) as follows. If (V,E&,P) is adjacency faithful in the sense of (ibid, p. 253) and
its empirical submodel satisfies condition (4.1)(a) of Theorem 4, X,Y,Z must form
an unshielded triple X—Y —Z in €. Then condition (4.1)(b) constitutes a violation of
Zhang and Spirtes’ orientation faithfulness (ibid.): Y must occur either in every or
in no subset that screens off X from Z. The simplest example of (4.1) is given by a
submodel ({ X,Y,Z},P) with the (in)dependencies DEP(X,Y), DEP(X,Y|Z), DEP(Y,Z),
DEP(Y,Z|X), but INDEP(X,Z) and INDEP(X,Z|Y): Here Y is contained in the screen-
off set { Y}, but not in the screen-off set &. An empirical model verifying (4.2) can be
produced by canceling parents as in Fig. 5 (cf. Zhang and Spirtes 2008, p. 256, Fig. 6).

Since unfaithful causal systems exist, (C)+ (F) would be empirically false if (F)
were formulated as a strictly general axiom. Proponents of TCN argue that (F) is
highly probable, i.e. satisfied by almost all empirical models. These arguments are
based on the fact that unfaithful CMs are parameter instable in the following sense:
their unfaithful independencies can be destroyed by arbitrary small changes of their
parameters P(X|par(X)) without violating (C):

Lemma 2 A (C)-satisfying acyclic CM (V,E,P) is faithful iff it is parameter-stable.

Lemma 2 is well-known (Pearl 2009, p. 48, def. 2.4.1). It implies that for every prob-
ability measure over the set of parameters of a CM which is “smooth” (i.e. absolutely
continuous with the Lebesgue measure over [0, 1]P), the probability of unfaithfulness
is zero (cf. SGS 2000, 41f; Steel 2006, p. 313). This is a formal result on probabili-
ties. It can only have implications for the frequency of unfaithful models in the real
world if we assume that the parameters of causal models do indeed vary in the real
world. But can these parameters always be varied? The belief that parameters can be
varied is usually supported by the argument that the variables of causal systems are
constantly perturbed by tiny influences from mutually independent noise variables in
almost all real world domains (cf. Steel 2006, p. 313). On closer inspection, however,
the argument faces two problems that require further investigation:

(1) According to the standard assumptions of TCN, the parameters of a CM repre-
sent “autonomous mechanisms” (cf. Pearl 2009, p. 63). What is directly manipulable
in a causal system without destroying its causal structure are not the parameters them-
selves, but the probability distributions over the variables by means of causal links to
external noise. This noise is usually represented by “noise variables” which summa-
rize the influence of all external perturbations on a variable (cf. Pearl 2009, p. 27; SGS
2000, p. 28). For the unfaithfulness triangle in Fig. 3b, this is graphically illustrated
in Fig. 6:

@ Springer



Synthese (2016) 193:1073-1103 1093

Ny

l
/Y\

NX_>X =Z<—NZ

Fig. 6 Unfaithfulness triangle of Fig. 3b with external noise variables Nx,Ny,Nz

By independently varying the prior probability distribution over the noise vari-
ables, the model’s parameters can be changed according to the following equation,
where P(n) = P(n|par(X)) because the noise variables are assumed to be mutually
independent:

(14) P(X[par(X)) = XnevaiNny) P(X|par(X).n) - P(n).

Assuming that the external noise variables have probabilistic influence on X (i.e.
P(X|par(X),n) # P(X|par(X)) for some n), we can change the parameter P(X|par(X))
by varying the prior probability P(Nx). Given we do this independently for all noise
variables, any unfaithfulness due to cancelation will disappear with high probability.

(2) We must distinguish between external noise (caused by external perturbation
variables) and error noise (caused by unrepresentative samples). External noise is
a property of the population, while error noise is a property of the sample which
decreases with increasing sample size N in proportion to 1/+/N. External noise will
turn an unfaithful independence into a dependence, but it cannot turn a faithful inde-
pendence into a dependence, since the noise influences are mutually independent in the
population. Sampling errors, on the other hand, can also turn a faithful independence in
the population into an accidental dependence in the sample. Zhang and Spirtes (2003)
show that the probability of an a-error (rejection of a true independence hypothesis)
and a p-error (rejection of a true dependence hypothesis) can be held simultaneously
small only if the parametric correlations in the population, P(X|par(X))—P(X), exceed
asmall threshold ) ; Zhang and Spirtes (2003 ) call this stronger property A-strong faith-
fulness. Uhler et al. (2013) show that for not too small %, the probability p, thata CM
violates \-strong faithfulness may be quite high. We cannot offer a better solution to
this problem than the remark that if the sample size N is very high, % can be chosen
so small that p, will still be low.

In this section we focus on (in)dependencies as population properties, by whose
means TCN’s content is expressed. Based on the preceding consideration we stipulate
the following assumption about external noise:

(15) External noise assumption (EN): The variables of most causal structures in our
world are causally influenced by many small and mutually independent distur-
bances (external noise) that fluctuate randomly over time.

The existence of external noise makes unfaithfulness due to cancelation highly
improbable. But what about the other two kinds of unfaithfulness?

In a deterministic universe, (EN) does not render determinism unfaithfulness
improbable, because the non-accidental deterministic dependencies “P(X|Y) = 17
that hold in such a universe hold by laws of nature: they cannot be “varied” because
there are no noise variables which are not already included in the antecedent-set Y.
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To be sure, if determinism and the noise assumption are true, the number of causal
parents that determine the value of a variable will be very high, but this doesn’t change
the force of the argument. Since we do not know whether the universe is deterministic,
nor how probable this is, we cannot show that (EN) renders determinism unfaithfulness
improbable.

An even stronger skeptical argument applies to intransitivity unfaithfulness. Recall
our example of an intransitive chain X — Y — Z with Val(Y) = {y{,y,.y3.y4} such
that INDEP(y;|X) iff i € {3,4} and INDEP(Z|y;) iffi € {1,2}). We assume a situation
in which it follows from the nature of the causal mechanisms underlying X — Y
and Y — Z that X has no causal influence on y; and y,, and that neither y, nor y,
has an influence on Z. In this case INDEP(y53,X|ny) and INDEP(y,,X|ny) will hold
for all value-adjustments of the external noise variable Ny (and the same goes for
INDEP(Z,y;Inz)) fori € {1,2}. By equation (14) above, this implies that

(16) For i € {3,4}: P(y;|X) = Znevany)P(yilXin) - P(n) = Tnevainy)P(yiln) -
P(n) = P(y;)

holds for every prior distribution P(N). So INDEP(y;_3 41X) cannot be changed by
adding external noise, and the same goes for INDEP(Z[y;_; ,).

A frequently discussed example of this sort has been given by McDermott (1995): a
right-handed terrorist is going to press a detonation button to explode a building, when
a dog bites his right hand and causes him to use his left hand for pressing the button.
McDermott’s example is somewhat artificial, but there are more realistic examples
from the sciences: Beryllium is diamagnetic in its ground state (magnetic moment m
= 0), but paramagnetic in its first excited state, in which case its magnetic moment M
takes one of several non-zero values m;, depending on the direction of a given external
magnetic field F. Assuming a beam of Beryllium atoms in a magnetic field, they will
be deflected from the straight line (Val(D) = {d,—d}) iff their magnetic moment is
non-zero. Thus ValM) = {0,my, ...,my} and only the values M = m;, but not the
value M = 0, depend probabilistically on F, while D’s value depends only on the value
M =0 versus M # 0. So F - M — D forms an intransitive causal chain in which F
has no influence on D.

In conclusion, an empirically tenable version of a faithfulness axiom must be
restricted to cancelation unfaithfulness. Cartwright (1999, p. 118) and Hoover (2001,
p- 171) have objected that cancelation unfaithfulness is frequent in domains of self-
regulatory systems whose parameter values have been selected by evolutionary or
intentional processes. Steel (20006, p. 313) counters this objection by the argument
that such selection processes can produce a precise cancelation of influences only if
external noise is absent. We find this argument convincing and add that self-regulatory
processes are never perfect and small deviations from a precise cancelation of influ-
ences occur.

In contrast, neither determinism nor intransitivity unfaithfulness is made improba-
ble by external noise. Fortunately there is a solution of this problem: there exist purely
empirical (or non-theoretical) conditions that are sufficient for the absence of deter-
minism unfaithfulness and intransitivity unfaithfulness. They are stated in conditions
(17.1+2) below. Our preliminary proposal of a tenable axiom of faithfulness asserts
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that if determinism and intransitivity unfaithfulness are excluded, causal models are
with high probability faithful:

(17) Axiom of restricted faithfulness (RF): If a CM (V, E,P) satisfies (P) and its non-
theoretical submodel (V,P) satisfies conditions (17.1) and (17.2), then (V,E,P)
is faithful with very high probability:

(17.1)(Exclusion of determinism unfaithfulness): No value of a variable X € V
depends deterministically on a subset U € V—{X}, and

(17.2) (Exclusion of intransitivity unfaithfulness): there exists no sequence of variables
(Zq, ...,Zy) such that
(a) DEP(Z;,Zi+1|U) holds for all U € V—{Z;,Zi1+1} (1 <i <n—1), but
(b) INDEP(Z1,Z,|E) holds for E = {Z;: INDEP(Z;_1,Zi+1), 1 <i<n}.

Assuming adjacency-faithfulness, condition (17.2)(a) implies that the variables form
an undirected chain X; — Xy — --- — X;. So condition (17.2)(a)+(b) requires
dependence-transitivity for every such chain conditional on a set E that contains all
common effects on this chain.!® Axiom (RF) asserts faithfulness on the condition
that determinism and intransitivity unfaithfulness are excluded. It is justified by the
external noise assumption, which makes all sorts of cancelation unfaithfulness highly
improbable.

We understand axiom (RF) as a first suggestion; improvements of it are left to future
papers. For example, condition (17.2) does not only exclude intransitivity unfaithful-
ness: it also excludes some cases of cancelation unfaithfulness (viz., those that are
distinct from adjacency unfaithfulness; see footnote 16). We couldn’t avoid this dis-
advantage, since in order to make axiom (RF) empirically contentful, condition (17)
had to be formulated in an empirical (non-theoretical) way. This empirical content is
expressed in the following corollary of Theorem 4:

Corollary 1 Axioms (C)+ (P)+ (RF) imply that empirical (non-theoretical) models
(V,P) which satisfy conditions (17.1) and (17.2) of axiom (RF) and either condition
(4.1) or (4.2) of Theorem 4 are very improbable.

In conclusion, (RF) produces probabilistic empirical content when added to axioms
(C)+(P): (C)+(P)+ (RF) make empirical (or non-theoretical) models (V,P) as
described in Corollary 1 very improbable. Moreover, this result holds for all pos-
sible variables, and hence, also for variables whose probability distribution has not
yet been observed. So this empirical content generates novel predictions that are inde-
pendently testable. The same is true for the empirical consequences of the stronger
versions of TCN introduced in Sects. 3.3 and 4.

It comes without surprise that if we measure the content of the empirical models
excluded by axioms (C) 4 (RF) by a logical information measure based on an indif-
ferent prior over the parameter space, then this content is very small—simply because
the probability of the excluded empirical models is very small. Recall our compar-
ison of “causality” in TCN with “force” in Newtonian mechanics. Obviously, (RF)

16 1f INDEP(Z;_1,Zi+1) holds, then either Z; is a common effect and must be in E (the “intended case”),
or Z; is acommon or intermediate cause which violates dependence-transitivity (in which case the inclusion
of Z; in E does no harm), or the dependence between Z;_1 and Z; | is canceled by a compensating path,
which is made improbable by assumption (EN).
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Fig. 7 Implications of temporal forward-directedness for screening off and linking up; X and Y can swap
places in each structure

doesn’t play an analogous role as special force laws do in Newtonian mechanics, since
(RF) increases TCN’s content only a little bit. In the next subsection we show how
TCN’s content can be increased in a similar way as special force laws increase New-
tonian mechanic’s content, by introducing more “substantial” axioms that constrain
the mechanisms underlying a CM’s causal arrows.

3.3 Empirical content of temporal forward-directedness

If we add the assumption of temporal forward-directedness (T) of causal processes
to TCN, the content of the resulting TCN-version is substantially increased. If (T) is
joined with the conjunction of (C) and the faithfulness condition (F), it excludes the
possibility that two variables are screened off by future common causes or linked up
by a common effect lying in the past of one of the two. The possible and impossible
situations are illustrated in Fig. 7.

To make this idea precise, we define a causal event-model (V,E,Pt) as a
CM (V,E,P) whose variables are event-variables, together with a time function
t: V— Reals, where t(X) is the time point at which the possible X-values (events)
x occur. We explicate axiom (T) as follows:

(18) Axiom of temporal forward-directedness (T): Every physically possible causal
event model (V,&,Pyt) [in an intended domain] satisfies condition (T), which is
defined as follows: X — Y implies t(X) < t(Y).

Note that all physically possible causal event models satisfying (T) are acyclic. The
strict generality of axiom (T) is an open question in contemporary physics,'” whence
we insert the cautious phrase in square brackets. The next theorem tells us that a
variety of empirical models are excluded when (T) is added to (C) + (F). Screening off
by future events is generally impossible; linking up by semi-past events (in the past
of at least one linked up event) is only impossible when the linking up event and the
linked up events are not screened off by common causes lying in their past. Figure 8
presents an example where this condition is violated: here we have INDEP(X,Z) and
DEP(X,Z|Y), although t(Y) < t(X),t(Z).

17" A universe in a high entropy state could admit temporally inverted causal processes (cf. Reichenbach
1956, 136ff; Savitt 1996, p. 353).
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Fig. 8 X and Z are linked up by Y, though Y lies in the past of X and Z

time

Theorem 5 (C)+(F)+(T) entail that empirical (non-theoretical) event-models
(V,Pt) with probabilistic dependencies of the following sort are impossible:

(5.1) Screening off by future events: DEP(X,Z), and INDEP(X,Z|Y ), where t(Y) >
t(X) and t(Y) > t(Z).

(5.2) Linking up by semi-past events without past common causes: INDEP(X,Z) and
DEP(X,Z|Y), where the following holds for \r = X or for \r = Z: (*) t(Y) <
t(\r) and there exists no C with t(C) < t(Y') and INDEP(\s,Y|C).

Theorem 5 assumes the full faithfulness condition (F), which is not an axiom of
TCN. However, we can also formulate a probabilistic version of Theorem 5 that foll-
ows from (C) + (RF) and says that CMs of the sort (5.1) and (5.2) are highly improbable.

Reichenbach (1956, p. 162) did not assume faithfulness in his attempt to justify
the direction of time on the basis of directed causal relations. He rather argued for the
impossibility of a “fork open towards the past”, i.e. a future event Z that screens off
two simultaneous events X and Y without having a common cause Z' in their past.
Theorem 6.1 proves Reichenbach’s argument within TCN. Theorem 6.2 goes beyond
Reichenbach’s claim and shows that under the additional assumption of (RF), a future
event Z can screen off X from Y only if either X, Y, or some values of a past screen-off
set for {X,Y} depend deterministically on Z, where U is called a past screen-off set
for X and Y iff INDEP(X,Y|U) and t(Z) < t(X),t(Y) forall Z € U.

Theorem 6 Assume XY € V are two temporally simultaneous event-variables with
DEP(X,Y). Then (C)+(T) entail that no non-theoretical model (V,Pt) can verify
condition (6.1), and (C) + (RF) + (T) entail that a non-theoretical model (V,Pt) that
verifies condition (6.2) is very improbable:

(6.1) There exists no past screen-off set U for X and Y.

(6.2) There exists a variable Z in the future of X and Y screening off X from Y, and
there exists a Z-value z on which no value of X, of Y, or of some past screen-off
set U for X and Y depends deterministically.

Like Theorem 5.2, Theorem 6 refers to the (non-)existence of not necessarily
observable variables; so its content is, strictly speaking, non-theoretical but not empir-
ical.

In conclusion, axiom (T) strongly enriches the empirical and non-theoretical con-
sequences of TCN. A still stronger enrichment is possible by assuming the condition
of locality, which asserts that no causal influence in an event model is propagated
with a speed greater than light velocity. A precise explication of this condition and its
content is left to future work.
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4 Conclusion

In this paper we investigated TCN in regard to its explanatory warrant and empirical
content. Concerning the explanatory warrant we demonstrated that TCN’s core axioms
can be justified by an IBE of screening off and linking up (Sect. 2). This justification
leaves it open whether the core axioms of TCN are strictly general, i.e. hold for
all domains. In Sect. 3 we saw that TCN’s core, i.e. axioms (C) + (P), is empirically
empty. If restricted faithfulness (RF) and the external noise assumption (EN) are added,
the resulting extended TCN-version acquires weak probabilistic empirical content.
By adding more “substantial” principles such as the principle of temporal forward-
directedness (T), TCN’s content becomes strong.

We mention one further kind of “substantial” principle which concerns human
interventions:

(19) Independence of human interventions (HI): Most of a person’s actions I =1 manip-
ulating variables of a person-external causal system (V, &€, P) that are experienced
as “free” are probabilistically independent of those variables in V that are non-
effects of 1.

Axioms (C) + (HI) make it highly probable that human interventions are value real-
izations of intervention variables I in the sense of SGS (2000, Sect. 3.7.2), Eberhardt
and Scheines (2007), or Woodward (2003, p. 98). Adding intervention variables to an
empirical model excludes further probability distributions. Elaborating this idea is left
to future work.
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Appendix: Proofs of lemmata and theorems

Proof of Lemma 1 For (1.1): Assume (V,€) is acyclic and X — Y in &. For reduc-
tio, assume T is a path in £€—{X— Y} that connects X with Y and is activated by
par(Y)—{X}. So T must have the form X — —Z <« Y. Thus 7 must carry at least one
common effect Z*; otherwise © would have the form X <—<« Y and (V,£) would be
cyclic. But since Z* ¢ par(Y)—{X}, m is blocked by par(Y)—{X]}, contradicting our
assumption.

For (1.2): Assume U D par(Y)—{X}. Both par(Y)—{X} and U d-separate X
from Y in (V,€—{X — Y}) (by assumption and lemma 1.1, respectively). Direc-
tion <= is trivial. For direction = we have to prove that INDEP(X,Y |par(Y)—{X})
implies INDEP(X,Y|U). We proceed by induction on the number of elements in U —
(par(Y)—{X}). Assume the claim has been proved for some U 2 par(Y)—{X} and let
U’ = UU{Z}, where U and U’ d-separate X from Y in (V,€—{X — Y}). We show that

(*) Either Z is d-separated from X by UU{Y}, or Z s d-separated from Y by UU{X}.

For reductio, assume (*) does not hold. We distinguish two cases. Case (A): Z is
d-connected with X given U U {Y}, and with Y given U U {X}, by two paths mx:
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Z—X and my: Z — Y, respectively, which both do not carry X — Y. In this case, Z
is d-connected with X and with Y by the respective paths given U alone. Let m be
the concatenation of 7x and my. If Z is a common effect on 7, then U’ would acti-
vate a new X—Y-connecting path, which is excluded, and if Z is not a common effect
on 7, then 1 would d-connect X and Y given U, which is excluded. So case (A) is
impossible. The other possible case is (B): Z is d-connected with Y and with X only
by paths 7 that contain X — Y as a subpath; these paths must either have the form (i)
X —>Y —Zor(ii)) Z— X — Y, but not both (else we would have case (A)). But this
is impossible since in case (i) X is d-separated from Z by U U {Y} (since if Y < Y’
ison 7, then Y’ € U), and in case (ii) Z is d-separated from Y by U U {X}.

Dawid’s axioms of probabilistic independence (cf. Pearl 1988, p. 84) include the
following (probabilistically valid) axioms:

Contraction: INDEP(X,Y|{Z} U U) A INDEP(X,Z|U) = INDEP(X, {Y,Z}|U).
Decomposition: INDEP(X, {Y,Z}|U) = INDEP(X,Y|U) A INDEP(X,Z|U).
Weak union: INDEP(X, {Y,Z}|U) = INDEP(X,Y|{Z} U U).

Assume by (¥) that Z is d-separated from X by UU{Y}. (The other possibility is that
Z is d-separated from Y by UU {X}; the proof proceeds in exactly the same way.) Since
(V,E&,P) satisfies (C), (a) INDEP(X,Z|U U {Y}) follows. From the induction hypoth-
esis INDEP(X,Y|U) and (a) INDEP(X,Z|U U {Y}) we get (b) INDEP(X, {Y,Z}|U) by
contraction, and from (b) we get INDEP(X,Y|U U {Z}), i.e. INDEP(X,Y|U’) by weak
union. O

Proof of Theorem 2 Proof of (P) = (Min): Assume (V,E,P) is not minimal.
So there exists an X—Y in &€ such that (V,E€, P) satisfies (C), where £~ =
E—{X—Y]}. Since par(Y)—{X} d-separates X from Y in (V, £7) (by lemma 1.1),
INDEP(X,Y |par(Y)—{X}) holds because of (C). So (P) is violated.

Proof of (Min) = (P): Assume that (V,&,P) satisfies (Min), which means that
there is no X,Y € V with X—Y € & such that (V,€£—{X— Y}, P) still satisfies (C).
The latter is the case iff

(*) the parent set par(Y) of every Y € V (with par(Y) # ) is minimal in the
sense that removing one of Y’s parents X from par(Y) would make a difference
for Y, meaning that P(y|x,par(Y)—{X}) # P(y|par(Y)—{X}) holds for some
X-value x, Y-value y, and some instantiations of par(Y)—{X}.

For otherwise P would admit the Markov factorization according to (8.2) both rela-
tive to (V,&,P) and relative to (V,€—{X— Y}, P). This implies by Theorem 1 that
V,E,P) and (V,E—{X—Y}, P) satisfy (C), i.e. (V,E,P) is not minimal, which con-
tradicts our assumption. Now, (*) entails that Dep(X,Y|par(Y)—{X}) holds for all
X,Y € V with X—Y, i.e., that (V,&,P) satisfies (P). O

Proof of Theorem 5 For (5.1): Recall Dawid’s axioms of probabilistic independence
from the proof of lemma (1.2). By switching Y with Z and setting U = &, the contra-
posed forms of decomposition and contraction give us DEP(X,Z) = DEP(X,{Y,Z})
and DEP(X,{Y,Z}) A INDEP(X,Z|Y) = DEP(X,Y). In the same way, switch-
ing X with Y and setting U = @ gives us DEP(Y,Z) = DEP(Y,{X,Z}) and
DEP(Y,{X,Z}) A INDEP(X,Y|Z) = DEP(Y.,Z).
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By these considerations, the assumptions DEP(X,Z) and INDEP(X,Z|Y) of Theo-
rem 5.1 entail DEP(X,Y) and DEP(Y,Z). So (by (C)) X and Y as well as Y and Z are
d-connected given & by two paths X — —Y and Y — — Z, whence (a) these two paths
don’t carry a common effect. (F) implies that X and Z are d-separated by Y which
together with (a) implies (b) that X —- - - — Y <« - .- —Zis impossible. (a) + (b) entail
that either X <<« Y or Y —— Z. But both possibilities are excluded by condition
(T).

For (5.2): Because of (F) and INDEP(X,Z), X and Z are d-separated (by &). Thus
and because of (C) and DEP(X,Z|Y), X and Z are d-connected by a path m that
carries a common effect Y’ that is either identical with Y or has Y as an effect. So
n:X—..-— Y <« ... —7Z, where 7 contains no colliders except Y'. By condition
(T) and assumption (*), this path cannot carry a common cause of Y’ and X and one
of Y’ and Z. So either (a) X —— Y’ or (b) Y’ <<« Z must be a subpath of 7. Both
cases are excluded by (T): In case (a), t(Y) < t(X) holds by assumption (*), whence
also t(Y’) < t(X) must hold (since either Y'=Y or Y —— Y, which implies by (T)
that t(Y’) < t(Y)). The same argument applies to case (b). O

Proof of Theorem 6 For (6.1): By DEP(X,Y) and (C), X and Y are d-connected (by
&), and by (T) and t(X) =t(Y), X and Y can only be d-connected by common causes Z
lying in their past. By (C), conditionalization on the set U of all such common causes
must screen off X from Y.

For (6.2): Assume Z is in the future of X and Y and screens off X from Y, whence
DEP(X,Y) and INDEP(X,Y|Z). It follows from the axioms of decomposition and con-
traction (similar as in the proof of Theorem 5.1) that DEP(X,Z) and DEP(Y,Z) hold.
Thus, X and Y, X and Z, and also Y and Z must be d-connected given &. From this
together with (C), (T) and t(Z) > t(X) = t(Y) it follows that X and Y must be d-
connected by a common cause path yg: X <—<« U —— Y (where U is the set of all
common causes of X and Y), and that X and Z must be d-connected by a cause—effect
or a common cause path; the same holds for Y instead of X. So there will also be a
path X — ... — Z' < ... — Y, where Z' is the only collider on this path and either
(1) Z'=Z or (ii) Z' —— Z holds. In what follows we write Z for Z'.

Let P = par(X) U par(Y) be the set of all parents of X and of Y. By the Markov-
condition (M) and (T), P is a past screen-off set for {X,Y} (though a redundant one:
par(X) or par(Y) alone is one, too); so INDEP(X,Y|P) holds. Note also that for some
p. DEP(X,p) and DEP(Y,p) must hold, since otherwise, by the proof in footnote 10,
the path wry that d-connects X and Y could not transmit dependence between X and Y.

There are two possible cases: either (A) INDEP(X,Y|PU({Z}) or (B) DEP(X,Y|PU
{Z}). Assume (B) is the case. Then we have INDEP(X,Y|Z) and DEP(X,Y|P U {Z}),
ie. X and Y are linked up and thus d-connected given Z conditional on P, but not
unconditionally. In other words, conditionalizing on P isolates the common effect
path X — ... — Z <« ... — Y between X and Y which was exactly canceled by
sy before. This would be a case of cancelation unfaithfulness, which is, according to
(RF), highly improbable.

Now assume case (A), INDEP(X,Y|PU{Z}). Since X and Y are d-connected given
P U {Z}, this constitutes, again, a case of unfaithfulness. We will show that it is (a)
either one of cancelation and, hence, made improbable by axiom (RF), or (b) a case of
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deterministic dependence of some X- or P-value on every z € Val(Z). Let us assume
that (b) is false, i.e.:

(*) VpVvx3z: P(p,x,z) #0, 1.

Without restricting the assumption of our proof we can assume that the prior prob-
abilities of all values of P, X, and Z are positive; simply by removing all values with
zero-probability from the value-space.

We compute, attaching indices to the identity signs for easy reference:

2P(YIpZ) P(pIX.Z)

2

P(YIX,Z) = X P(Yp,X.2)P(pIX,Z) =

3

=

P(YIZ) = %, P(YIp,Z)-P(pIZ)

Identity “=3" holds by assumption INDEP(X,Y|Z), given (*). (Note that by the
definition of “INDEP(X,Y|Z)” Vx,y,z: P(y|x,z) = P(y|z) or P(x|z) = 0 or P(z) = 0
holds; the latter case is excluded by our assumption of positive prior probabilities.)
The identities “=;” and “=s"" hold by probability theory, and “=>" follows from case
(A) (plus assumption (*) and positive priors). This gives identity “=4". The identity
“=3" can only hold in two cases:

Case (A.1): DEP(Y,P|Z), i.e. there exist at least two distinct values P(Y|p1,Z) #
P(Y|p2,Z) in the above sums at the right hand side. Assume P(p|X,Z) differs from
P(p|Z) for some P-values p. The values of P(p|X,Z) and P(p|Z) are weights whose
sums always add up to one. Since the differences in these weights do not change the
resulting sums (X,P(Y|p, Z) - weightp), this can only be because these differences
are exactly canceled by the differences in the P(Y|p,Z)-values. This would constitute
a case of unfaithfulness due to internal canceling paths (in the sense of Niger, see
Sect. 3.3), which is made improbable by axiom (RF). So we infer P(p|X,Z) = P(p|Z)
for all P-values p, i.e. INDEP(X,P|Z).

Case (A.2): INDEP(Y,P|Z). From the two cases (A.1+2) we conclude:

Case (A*): INDEP(X,P|Z) VINDEP(Y,P|Z),i.e. Z screens off either X or Y from P.

For the rest of the proof we assume

(a) INDEP(X,P|Z).

IfINDEP(Y,P|Z), X and Y change their roles and the proof works in exactly the same
way.

By the remarks above, the causal structure between X, P and Z has one of the
following three forms:

time Z Z Z
\| "\ N
P P P

(@) (i) (iii)

Note that the path(s) from P to Z in (i) and (ii) may or may not include a common

i

cause path (that may go through Y); this is indicated by “— —”.
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Assume causal structure (i): We assume (+) DEP(X,Z|P)—otherwise the case
is treated exactly as in the proof for structure (ii), which rests on condition
INDEP(X,Z|P). Likewise we assume (++) DEP(P,Z|X)—otherwise the case is treated
exactly as in the proof for structure (iii), which rests on INDEP(P,Z|X).

From (+) and (++) it follows that DEP(Z,P) must hold (otherwise, INDEP(P,Z)
and INDEP(P,X]|Z) would imply by the axioms of contraction and decomposition
INDEP(P,X), which contradicts DEP(P,X)). This means that we have a case of can-
celation unfaithfulness: though both paths P — X and P — - -- — Z <« X transmit
probabilistic P-X-dependence when conditionalizing on Z, they exactly compensate
each other. This case is made improbable by axiom (RF).

Assume causal structure (ii): Here we have INDEP(X,Z|P) by the causal Markov
condition (M).!8 From INDEP(X,Z|P), INDEP(X,P|Z) and our assumption of posi-
tive priors we get:

(b) Vx,z,p: P(x|z,p) = P(x|z) vV P(p|z) = 0, and
(¢) Vx,z,p: P(x|z,p) = P(x|p) v P(plz) = 0.
(d) By DEP(X,P) there exist py,p2 such that P(x|py) # P(x|p2).

Thus either Vz: P(p1|z) = 0 v P(p2|z) = 0; or for some z: P(x|p;) = P(x|z) holds
by (b)+(c) fori=1 and i = 2, which contradicts (d). So Vz: P(p1|z) = 0 Vv P(pz2|z)
= 0), i.e. every Z-value has some P-value that depends deterministically on it.

Finally assume causal structure (iii): Here we have INDEP(P,Z|X) since P and Z
are d-separated by X. INDEP(P,Z|X) and INDEP(P,X|Z) plus positive priors give us
(similarly as in case (ii))

(b') Vx,z,p: P(p|z,x) = P(p|x) vV P(x|z) = 0, and
(c") Vx,z,p: P(p|z,x) = P(p|z) v P(x|z) = 0.
(d) By DEP(X,P) exist x1, X such that P(p|x;) # P(p|x2).

Thus either Vz: P(x1|z) = 0 Vv P(x2|z) = 0; or for some z: P(p|x;) = P(p|z) holds
by (b")+(c’) for i = 1 and i = 2, which contradicts (d'). So every Z-value has some
X-value that depends deterministically on it.

Thus, assumption (*) must be false, which concludes our proof. O
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