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Abstract According to the paradigm of adaptive rationality, successful inference

and prediction methods tend to be local and frugal. As a complement to work within

this paradigm, we investigate the problem of selecting an optimal combination of

prediction methods from a given toolbox of such local methods, in the context of

changing environments. These selection methods are called meta-inductive (MI)

strategies, if they are based on the success-records of the toolbox-methods. No

absolutely optimal MI strategy exists—a fact that we call the ‘‘revenge of ecological

rationality’’. Nevertheless one can show that a certain MI strategy exists, called

‘‘AW’’, which is universally long-run optimal, with provably small short-run losses,

in comparison to any set of prediction methods that it can use as input. We call this

property universal access-optimality. Local and short-run improvements over AW

are possible, but only at the cost of forfeiting universal access-optimality. The last

part of the paper includes an empirical study of MI strategies in application to an

8-year-long data set from the Monash University Footy Tipping Competition.

Keywords Prediction task � Adaptive rationality � Strategy selection �
Meta-induction � Online learning

& Gerhard Schurz

schurz@phil.uni-duesseldorf.de

Paul D. Thorn

thorn@phil-fak.uni-duesseldorf.de

1 Department of Philosophy, Heinrich Heine University Duesseldorf, 40225 Düsseldorf, Germany

123

Minds & Machines (2016) 26:31–59

DOI 10.1007/s11023-015-9369-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-015-9369-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-015-9369-7&amp;domain=pdf


Introduction: Prediction Tasks, Strategy Selection, and Paradigms
of Rationality

Prediction (or inference) methods generate predictions about unobserved events or

objects, utilizing available information about the given environment. We assume

that the rationality of a prediction method should be evaluated according to its

objective success rate in the given environment, which may either be understood as

its predictive success rate (truth frequency), or in terms of its epistemic payoff as

measured by cognitive costs and predictive gains.

According to the paradigm of universal rationality, good prediction strategies

should be as general as possible, being applicable to all, or almost all, cognitive

purposes and environments. In philosophy, this paradigm was promoted in its

deductive variant by critical rationalists (Popper 1935) and more recently by formal

learning theorists (Kelly 1996), and in its inductive variant by logical empiricists

(Carnap 1950) and more recently by Bayesian philosophers of science (Howson and

Urbach 1996). In psychology, the logical variant of this paradigm was represented

by the Turing-model of cognition (cf. Wells 2005), and its inductive variant by

universal learning theories based on behavioral conditioning or reinforcement (cf.

Shanks et al. 1996).

The paradigm of universal rationality has been subjected to serious criticism by

the younger paradigm of locally adaptive (or ecological) rationality. Advocates of

the latter paradigm argue that good prediction methods are, and should be, adapted

to the structure of local environments, being tailored to the specific tasks for which

they provide highly efficient solutions. In philosophy, this paradigm is rather new.

In psychology this paradigm was pioneered by Simon (1982) and has been

developed by Gigerenzer, Todd, and the ABC research group.1 This research

program operates on the assumption that all successful cognitive methods used by

humans are more-or-less local, and that simple heuristics are frequently more

successful than computationally costly general reasoning mechanisms, following

the slogan ‘‘less can be more’’.

The success of any locally adapted method depends on its being applied in the

‘right’ environment. However, biological organisms and especially humans

frequently face changing environments. The present paper focuses on the

investigation of adaptive rationality in prediction tasks conducted within changing

environments. Under such conditions, one needs strategies that select, for each

relevant environment, a method or a combination of methods that performs as well

as possible in that environment. Following Rieskamp and Otto (2006, p. 207), we

call this the problem of strategy selection. We thereby understand selection

strategies as meta-level methods which apply their selection strategies to a given

toolbox of locally adapted methods in the sense of Todd and Gigerenzer (2012,

p. 10f). This paper focuses on meta-induction, a family of meta-level methods that

base their selection strategy on the observed success records of the candidate

methods in the toolbox, and on that basis, attempt to select an optimal prediction

method, or an optimal combination of such methods.

1 Cf. Gigerenzer et al. (1999), Todd and Gigerenzer (2012), and Hertwig et al. (2013).
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Are There Optimal Selection Strategies? A Challenge for Ecological
Rationality

Meta-level selection strategies can only have a cognitive benefit if their success is

highly general, applying to a large class of environments and tasks. Indeed, if there

were not meta-level methods whose applicability was significantly more general

than the object-level methods in the adaptive toolbox, then there would be no point

in distinguishing between these two levels at all. In other words, the strategy

selection account only makes sense if the meta-level strategies are highly general

without being too complex. This raises the question: Do such methods exist? In this

paper we try to give an answer to this question.

Researchers within the adaptive rationality program acknowledge the importance

of the strategy selection problem. For Todd and Gigerenzer (2012, p. 15), the study

of ecological rationality centers around the question of which heuristics are

successful in which kinds of environments. They propose a list of simple rules that

are intended to indicate, for each of their studied heuristics, the kinds of

environment in which it may be successfully applied, and in which it may not (ibid,

Table 1.1). On closer inspection, however, their rules are not fully adequate. For

example, consider the heuristic take-the-best, abbreviated as TTB, a well-known

meta-inductive rule that will be studied below. TTB monitors predictively relevant

cues, and bases its prediction on the cue with the highest validity that discriminates.

According to Todd and Gigerenzer (ibid., p. 9), TTB is ecologically rational in

environments with high redundancy (positive correlations between cue values) and

a high dispersion of cue validities. Similarly, Rieskamp and Dieckmann (2012)

report that high cue redundancy favors TTB while low cue redundancy favors

weighting methods. However, these generalizations are too good to be generally

true. The connection between high cue redundancy and TTB’s optimality can be

violated in both directions, as demonstrated in Schurz and Thorn (2014), among

other sources.2

The preceding observations do not diminish the great success of the adaptive

rationality program in discovering many surprising less is more effects. They rather

point towards an underdeveloped area of this program, namely the selection-of-

methods problem. They also indicate a major challenge (if not a dilemma) for the

program of ecological rationality. Indeed, if there were simple rules of the form ‘‘In

environment of type Ei, method Mi is optimal’’ (for all Ei in a partition of

environment types {E1, …, En}), then the combined strategy ‘‘For all

i [ {1, …, n}: apply method Mi in environment Ei’’ would be a universally optimal

(combined) strategy. The existence of such a strategy would, thereby, re-install

universal rationality, and undermine the very program of adaptive rationality.

2 The lack of connection between a high cue correlation and TTB’s success is also reported in Czerlinski

et al. (1999, p. 116f). The implication between high cue-validity dispersion and TTB’s optimality holds

only in ‘‘naive Bayes’’ environments (cf. fn. 13 and Katsikopoulos and Martignon 2006, Corollary 1).

Gigerenzer and Brighton (2009, p. 143) and Brighton and Gigerenzer (2012, p. 55) describe an

environment with zero cue validity dispersion (a so-called Guttman environment) in which TTB works

particularly well.
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Can universal rationality be re-installed in this simple way? The simple answer

is: No. Following from well-known results in formal and computational learning

theory (see next section), there cannot be a prediction method (be it an object-level

or meta-level method) that is absolutely optimal, i.e., optimal in all environments

among all possible prediction methods. This fact is frequently mentioned in work on

adaptive rationality (cf. Martignon and Hoffrage 1999, p. 128; Todd and Gigerenzer

2012, p. 5). Therefore, there cannot be exhaustive and fully general meta-rules

which specify for each task and environment a locally optimal method. In what

follows, we call this fact the revenge of ecological rationality.

While there is no absolutely optimal selection strategy, the ecological rationality

program presupposes selection rules whose success is at least very or sufficiently

general. If such rules did not exist, one could not explain why humans are so

successful in selecting the ‘right’ method for their given environment, in spite of the

fact that their environment constantly changes. What makes it difficult to find

general rules for selecting methods is that the success-relevant features of the

environment are frequently cognitively inaccessible. Similarly, changes in the

environment are often unrecognizable and unforeseeable: Consider the transitions

between expansion and recession phases in the market economy. To deal with

changing environments of this sort, one needs strategies for learning which object-

level methods perform best in which environment, and in which temporal phases of

the environment. This brings us to the account of strategy selection by meta-

inductive learning. While Rieskamp and Otto (2006) recommend reinforcement as

the learning method for strategy selection, meta-induction demarcates a more

general family of selection strategies, which includes reinforcement as a special

case.

The account of meta-induction was developed within the domain of epistemology

as a means of addressing Hume’s problem of induction (Schurz 2008, 2009; Arnold

2010; Vickers 2010, §6.3), utilizing results from the area of machine learning (Cesa-

Bianchi and Lugosi 2006). Meta-inductive methods have also been applied in the

area of social epistemology (Schurz 2012; Thorn and Schurz 2012; Feldbacher

2012). The simplest meta-inductive strategy is Imitate-the-best (ITB), and its

relative Take the best (TTB), which imitate the predictions of the so far best

available prediction methods. More elaborate meta-inductive strategies predict a

weighted average of the predictions of the methods that have been successful so far,

using different weighting methods (see below).

The method TTB has been investigated in a variety of studies with the well-

known result that under certain conditions TTB is predictively more successful than

more complex prediction methods with higher information demands.3 In almost all

of these studies, TTB was investigated as a prediction method based on (a) binary-

valued cues, under the assumption that (b) the cue validities are either known or else

estimated by random sampling from an environment whose probability distribution

3 See (among others) Gigerenzer et al. (1999), ch. III, Brighton and Gigerenzer (2012), Rieskamp and

Dieckmann (2012), and Katsikopoulos et al. (2010).
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does not change in time.4 In contrast, our investigation involves two major shifts in

the problem setting:

1. Instead of assuming that cue validities are known or estimated by random

sampling, we assume a situation of online learning conducted within a possibly

changing environment, and

2. We pass from the object-level perspective to the meta-level perspective,

applying meta-inductive strategies such as TTB not only to the selection of

cues, but more generally to the selection of (object-level) prediction methods of

any sort.

From the object-level perspective, one compares prediction methods that are

based on a set of cues C1, …, Cn. For example, the method TTB uses the best cue,

while the method SW (also called ‘‘Franklin’s rule’’) uses a success-dependent

weighting of cues.5 The cues are themselves predictive indicators of a criterion

variable whose values or value-relations must be predicted. Each cue has a given

probability of predicting correctly, conditional on its delivering a prediction at all.

This conditional probability is called the cue’s (ecological) validity (Gigerenzer

et al. 1999, p. 84). In one well known experiment that illustrates this perspective, the

task was to predict which of two German cities has a higher population, based on

binary cues such as (C1) whether it is a national or state capital, (C2) whether it has

a first division soccer team, etc. In experiments of this sort, a cue (Ci) delivers a

prediction if it ‘discriminates’ between the two compared cities: For example, if the

cue has the value 1 for city A and 0 for city B, then it predicts that city A has a

larger population than city B. We will see in the ‘‘Take-the-Best (TTB)’’ section that

this comparative prediction format can be generalized to the format of arbitrary

non-comparative prediction tasks (e.g., weather forecasts) without incurring any

loss of intelligible results.

When we pass from the object-level perspective to the meta-level perspective, we

(1) re-interpret cues as locally adapted prediction methods, which may either be

simple cues, real-life experts, or computational methods, and (2) re-interpret TTB

and related meta-induction methods as meta-level strategies for selecting optimal

prediction methods.6 Prima facie, this is only a change in perspective, consisting of

a redescription of cues as prediction methods. Does it bring anything new?

The major innovation deriving from this change in perspective consists in raising

new questions, concerning the success of meta-level strategies in comparison to the

locally best object-level methods or cues. Within the adaptive rationality research

program, these questions have not been asked, so far, presumably because cues were

4 Exceptions to (a) are Hoffrage et al. (2000), Hogarth and Karelaia (2005) and Katsikopoulos et al.

(2010), who study prediction tasks based on continuous-valued cues. Exceptions to (b) are Dieckmann

and Todd (2012), and Rieskamp and Otto (2006), who study prediction tasks in the course of online

learning.
5 Other frequently studied methods are Dawes’ rule (equal weights), regression (optimal weights), and

‘‘naive Bayes’’ (Gigerenzer et al. 1999, part III).
6 A related idea is anticipated in Katsikopoulos and Martignon (2006, p. 491), who interpret a cue as a

juror voting for one of two options in a social choice task.
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not regarded as prediction methods. To understand the significance of such

questions, recall the negative result that there is no method which is absolutely

optimal. However, only a (finite) fraction of all possible prediction methods are

cognitively accessible to any human-like agent. This raises the following new

question: Is there a meta-inductive strategy which predicts optimally in comparison

to all candidate prediction methods which are accessible to it, no matter what these

methods are, and in what environment one happens to be? In what follows we call

this property access-optimality, in distinction to absolute optimality, which is not

restricted to the accessible methods. The philosophical importance of access-

optimality lies in the context of the problem of induction. Before we turn to this

problem, we make some notions, that have been informally introduced, logically

precise.

Dynamic Online Learning, Prediction Games, and Access-Optimality

In online learning, one must simultaneously predict future events and learn from the

results of past predictions. In this paper, we study online learning conducted under

possibly changing environments, henceforth called dynamic online learning. In

Schurz (2008), the study of dynamic online learning was developed on the basis of

prediction games. A prediction game ((e), P) consists of:

1. An infinite sequence (e) := (e1, e2, …) of events en [ [0,1], which are coded by

real numbers between 0 and 1. For example, (e) may be a sequence of daily

weather conditions, football game results, or stock values. Each time n

corresponds to a round of the game.

2. A finite set of prediction methods or ‘players’ P = {P1, …, Pm, MIx}, whose

task, at each time n, is to predict the next event of the event sequence. ‘‘MIx’’

signifies a meta-inductivistic player of a certain ‘‘type x’’. The other players are

called the ‘‘non-MI-players’’; they form the ‘toolbox’ of MIx’s candidate

methods or cues, and may include real-life experts, ‘virtual players’

implemented by computational algorithms, and ‘para-normal’ players, e.g.,

clairvoyants who may be successful in para-normal worlds.

A prediction game corresponds to an environment, or possible world, where the

event-sequence constitutes the natural part of the environment, and the player set

the social part. We identify each method with one player; this is possible because

prediction methods are evaluated according to their success, and not according to

the number of their adherents. While all possible event-sequences are allowed, we

assume that the player set is finite, because finite cognitive beings can only compare

finitely many different methods.

Binary prediction games are a subcase of real-valued games in which the

predictions and events take the value 0 or 1. We also distinguish between prediction

games with persistent and intermittent players. Persistent players deliver a

prediction for each event, while intermittent players do not. This may be the case

because a player refrains from predicting in the given round, because she predicts
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but her prediction is inaccessible to the meta-inductivist, or because the prediction

task is comparative in nature, being based on a pair of cue values (as in the studies

mentioned in the previous section), and the cue doesn’t discriminate.

Further notation that we use later includes:

• predn(P) [ [0,1] is the prediction of player P for time n, which P delivers at time

n - 1. In binary games, predn(P) [ {0,1}.

• lossn(P) is the loss of P for time n. Most natural is the linear loss-function,

defined as |predn(P) - en|. The linear loss of a binary prediction is 0 if it is

correct, and 1 if it is incorrect. (The theorems presented below do not presuppose

that the respective loss functions are linear.)

• scoren(P) = def 1 - lossn(P) is the score which player P earns for predn(P).

• absn(P) is the absolute success achieved by player P at time n, defined as the sum

of P’s scores for predictions delivered until time n.

• predfreqn(P) = def the relative frequency with which player P delivered

predictions until time n.

• valn(P) = def absn(P)/(predfreqn(P)�n) is the (ecological) validity of player P at

time n, i.e., P’s success rate conditional on times at which P delivered a

prediction.

• sucn(P) = def predfreqn(P)�valn(P) ? (1 - predfreqn(P))�ran. This is P’s uncon-

ditional success rate at time n, where P’s score for non-predictions is identified

with the score of a random guess, denoted as ‘‘ran’’. The same convention is

adopted by Martignon and Hoffrage (1999, p. 131).

The validity of a persistent player coincides with her success rate. In contrast, the

validity of an intermittent player is greater than her success rate, provided her

predictions are better than random guesses, because her non-predictions are scored

as random-guesses. The latter convention is important for making a fair comparison

of the success rates of persistent and intermittent players. Otherwise, a player could

improve her success rate by refusing to predict when her uncertainty is high. Given

the proposed convention, a player cannot improve her success rate by selectively

refraining from prediction, but only her validity.

• limsuc(P) is P’s limit success rate =def limn?? sucn(P), provided the success

frequencies converge. Limiting (event, success) frequencies, if they exist, are

identified with (event, success) probabilities, written as ‘‘p(-)’’.

• maxsucn is the maximal success rate of the non-MI-players at time n, and

maxlimsuc is their maximal limit success, provided the success frequencies

converge.

In the setting of dynamic online learning, event frequencies, validities, and

success rates may change over time. They may even fluctuate permanently, so that

their relative frequencies do not converge to probabilities. Therefore validities and

success rates are always relativized to certain time points of a prediction game. This

is significantly different from learning by random sampling where sample

frequencies will certainly converge with increasing sample size.
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We define our basic notion of optimality in the manner that is usual in decision

and game theory (Weibull 1995, p. 13). These notions are independent of any

assumptions about probability distributions, but they are relativized to a class E of

prediction-games or environments.

Definitions of optimality and dominance

1. A method M* is called optimal with respect to (w.r.t.) a class E of environments

iff for all ((e), P) in E: M* [ P and for alternative methods M [ P (i.e.,

M = M*), M* is at least as good as M in ((e), P).—‘‘M* is at least as good as

M’’ can be understood in two ways:

1:1. In the long-run, meaning that limn??(sucn(M*) - sucn(M)) C 0; we

speak here of ‘‘long-run optimality’’.

1:2. In the short-run, meaning that for all n, sucn(M*) C sucn(M) - L(n),

where L(n) is a ‘sufficiently small’ short-run loss that converges

‘sufficiently fast’ to zero for n ? ?. We speak here of ‘‘approximate

short-run optimality’’. This is a vague notion. Only ‘‘strict short-run

optimality’’ (defined by L(n) = 0 for all n) is a sharp notion, but this is too

good to be achievable by meta-inductive methods.

Note: The optimality of M* w.r.t. E does not exclude that there exists some

other method M’ that is ‘equally optimal’ w.r.t E. This is excluded within the

stronger notion of dominance.

2. A method M* is called dominant w.r.t. E iff M* but no other method M is

optimal w.r.t. E.—Note: (a) This implies that for every M = M* there exists an

environment ((e), P) [ E such that either M 62 P, or M* is better than M in

((e), P). (b) If definition 2. does not hold for every M, but only for every M in a

given class M of methods, we say that M* is called dominant w.r.t. Eand M.

A brief classification of methods

A method is independent if its predictions depend only on the events, but not on

the predictions of the other players. Non-independent methods are called social

methods. A method is object-inductive or meta-inductive, respectively, if it uses

some kind of inductive method to infer future from past events, or future from past

successes, respectively. A method is normal if its predictions depend only on past

events or successes. A method is para-normal or clairvoyant if it has ‘privileged’

access to future events. Note that the admission of clairvoyant methods is needed in

the philosophical context of the problem of induction, but not in the naturalistic

setting of cognitive science.

Each normal method (or player) P can be extensionally identified with a function

fP: [n[|NX
n ? X which maps each length-n history of elements of an event space X

into a prediction of the next event en?1. The elements of X are ordinary events if P is

an individual method, as in formal learning theory (Kelly 1996, p. 260f), and they

consist of events together with the other players’ predictions if P is a social method.7

7 A clairvoyant P ‘sees’ the future, and can be identified with a function fP: |N 9 X? ? X.
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We mentioned above that no normal method is absolutely optimal, i.e., optimal with

respect to the class of all environments. In the framework of prediction games, this

result is easily proved: Let fP be the prediction function of a normal method P. For

every such method fP (and for every set of competing players, if P is a meta-method)

one can define a ‘‘fP-demonic’’ event-sequence (e*), which produces for each time n

a worst-score event (defined as en* = 0 if predn(P)[ 0.5; else en* = 1). Moreover,

one can define a method f* which perfectly predicts the event-sequence (e*). So fP is

not absolutely optimal.

Observe that if P is a meta-method, the preceding proof only goes through if P

does not have access to f*’s predictions. If fP can imitate f*’s predictions, it is no

longer generally possible to construct an event-sequence (e*) which deceives fP and

at the same time rewards f*. This simple but crucial fact underlies all the results

concerning access-optimality.

Definitions of access-optimality

3:1. A method M is accessible to a (social) method M* iff M* can observe—or

otherwise simulate—M’s present predictions and past predictive successes.

3:2. A (social) method M* is access-optimal w.r.t. E iff M* is optimal w.r.t. the

class of all environments ((e), P) in E in which all methods in P are

accessible to M*.

3:3. M* is universally access-optimal iff M* is access-optimal w.r.t. the class of

all environments.

We now return to our major question: Is there a meta-level strategy that is

universally access-optimal in the long-run? The answer is trivially Yes, if the

success rates (or validities) of the non-MI-methods or cues converge to probabilities

and are known in advance. In this case, applying TTB at the meta-level selects, in

each environment, the best method in the ‘toolbox’ of candidate methods, whence

TTB’s predictive success is guaranteed to be access-optimal. So under the condition

of known success rates the question of access-optimality is not particularly

interesting.

The situation is decisively different when the cue validities are not known but

must be learned by the uncertain methods of induction. Since inductively estimated

cue validities may diverge from the true ones, neither TTB nor any other meta-

inductive strategy is guaranteed to always select the best method, or combination of

methods. Now the question of the existence of a universally access-optimal method

becomes entirely non-trivial. This question is of particular importance for the

problem of induction, as we shall explain at the end of the section on ‘‘Attractivity-

Weighted Meta-Induction’’.

There are, however, two significantly different ways by which inductive

inferences may be applied. The first is the method of random sampling that is

applied in much of the research on adaptive rationality (cf. fn. 3). This method is

only applicable under two ‘‘induction-friendly’’ conditions: first, samples are drawn

from a population whose frequencies (or frequency-limits) don’t change within the

time window of the inductive experiment, and second, all individuals in the
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population (or events in the event-sequence) have the same chance of appearing in

the sample or ‘training set’. This means probabilistically that the sample distribution

is IID (independent and identically distributed). The parameters found in the

training set are inductively projected to the remainder of the population, the test set.

Following from the laws of IID random sampling, the success rates (or validities)

estimated from the training set will deviate from the true success rates in the test set

by a symmetrically distributed error variance. Because of this error variance,

complex prediction strategies such as success-based weighting and linear regression

tend to overfit the frequencies found in small samples, i.e., they fit to random

variations instead of representative tendencies of samples. This explains why

complex strategies, if based on small samples, frequently perform worse than TTB

and other frugal prediction methods (cf. Brighton and Gigerenzer 2012, p. 36, 44f;

Katsikopoulos et al. 2010).

The second way of applying inductive inference is investigated in this paper:

dynamic online learning, as modeled by prediction games. For many real-life-

situations, dynamic online learning is the more realistic learning situation compared

to random sampling, because it is also applicable in the absence of induction-

friendly conditions. It differs from random sampling in three respects. First of all, in

dynamic online learning, past observations are inductively projected into the future:

Since one can only observe past but not future events, not all members of the event

sequence have the same chance of entering the observed sample. Secondly, there are

no delineated training and test phases. Admittedly one may artificially distinguish

between a training and test phase at each round, by considering the observations

made so far as the training set, and the predicted event as the test set. But thirdly—

this makes the crucial difference—the success rates (and validities) of the cues may

systematically change in time, i.e., the future may be systematically different from

the past. Since after the training phase has passed the success rates may have already

changed, dynamic online learning requires constant updating of the inductively

projected success rates.

In probabilistic terms, the ‘sampling’ procedure in dynamic online learning not

only generates an error variance, as in the case of random sampling, but may also

generate a systematic bias (cf. Brighton and Gigerenzer 2012, p. 46f). This

systematic bias manifests itself in the form of a correlation between the (event or

success) frequencies in the training phase and those in the test phase, which creates

difficulties when the correlation is negative. As we shall see, the difficulties

generated by such correlations affect simple prediction methods, such as TTB, as

well as complex ones.

A correlation between past and future events means that the underlying event

sequence is a Markov chain (whose elements are not IID). This possibility is

admitted in the framework of dynamic online learning. It is even admitted that the

event or success frequencies do not converge to a limit but oscillate forever. In that

case, the sequence is not generated by a probabilistic source, and all that one can

study are its finite frequencies.

The study of dynamic online learning of individual sequences is complementary

to Bayesian learning. In addition to meta-inductive approaches, methods of dynamic

online learning were developed within formal learning theory (Kelly 1996) and,

40 G. Schurz, P. D. Thorn

123



under the rubric of ‘‘online learning under expert advice’’, within computational

learning theory (Cesa-Bianchi and Lugosi 2006). Our notion of access-optimality is

a generalization of the property known as ‘‘Hannan-consistency’’ (Cesa-Bianchi and

Lugosi 2006, p. 70). The major advantage of the framework of dynamic online

learning is that its key results are independent of particular assumptions about prior

probability distributions (which does not exclude that these results can be extended

by such assumptions, see below). In contrast, key Bayesian results depend on

assumptions about prior probabilities: This point is substantiated at the end of the

section on ‘‘Attractivity-Weighted Meta-Induction’’. Some Bayesians argue that our

prior probabilities should be adapted to our local environment. However, prior to

inductive inference from experience we have no clue which prior distribution fits

with our (future) environment. In other words, prior probabilities are not empirically

grounded but subjective in nature (cf. Schurz 2013, ch. 4.7).

In the following three sections, we present the major theoretical results

concerning meta-induction. From this point on, we always assume that the non-

MI-players of the prediction game are accessible to MIx.

Imitate-the-Best (ITB)

A simple yet surprisingly efficient meta-inductive method is ‘‘Imitate-the-best’’,

ITB, which predicts what the non-MI-player with the presently highest predictive

success rate predicts; this player is called ITB’s present favorite. ITB changes her

favorite only if another player becomes strictly better. If there are several best

players, ITB chooses the first-best player according to an arbitrary ordering. If her

favorite fails to deliver a prediction, ITB predicts according to a random guess.

ITB’s initial prediction (at time 0) is a random guess.

Theorem 1 tells us that ITB is (access-) optimal, not in all environments, but in

the class of those environments where the leading method remains constant after

some ‘‘winning time’’ w, i.e., where there exists a Pk such that for all n C w,

sucn(Pk)[ sucn(Pi), for all i = k:

Theorem 1 For each prediction game ((e), {P1, …, Pm, ITB}) whose set of non-

MI-players contains a best player Pk after winning time w, the following holds:

1:1. (Short-run) For all n[w: sucn(ITB) C maxsucn - (w/n).

1:2. (Long-run) ITB’s success rate approximates the maximal success rate:

limn??(maxsucn - sucn(ITB)) = 0.

Theorem 1 holds for all monotonic loss functions, where lossn(P) is a strictly

positive monotonic function of |predn(P) - en| (the same holds for Theorem 3

concerning TTB). Theorem 1.2 implies that ITB is access-optimal in the long run in

all environments containing a best non-MI-player after some winning time w.

Figure 1 shows the result of a computer simulation of a binary prediction game of

the sort described by Theorem 1: ITB always imitates the best player, which

changes from the object inductivist to Player 2.
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Whenever ITB switches her favorite, ITB has to buy a loss of (at most) one score-

point compared to the best player. These losses may accumulate. The existence of a

winning time w excludes the possibility that these losses may grow infinitely,

because after time w, ITB will no longer switch her favorite. ITB’s worst case short

run loss is (w/n), which is only small if the winning time is small.

The optimality of ITB breaks down whenever the success rates of two or more

leading non-MI-players oscillate endlessly around each other in negative correlation

to their position of being ITB’s favorite. This situation is programmed in Fig. 2 in a

binary prediction game with two success-oscillating ‘deceiving’ players who each

predict incorrectly exactly when they become ITB’s favorite. As a result, ITB’s

success rate goes to zero while the success rate of each deceiver converges to 1/2.

The success oscillations in Fig. 2 are called convergent because the oscillation

amplitudes are decreasing so that the oscillating success rates converge to the same

limit. A simple modification of ITB yields a form of meta-induction that is resistant

to convergent success oscillations: a conservative variant of ITB with a small

switching threshold e, abbreviated as eITB, which switches her favorite only if the

success difference between her present favorite and the new better player exceeds e.

Fig. 1 ITB, an object inductivist, and two alternative success-convergent players

Fig. 2 Binary prediction games with ITB against two deceiving players with convergent success-
oscillations
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It is demonstrable that eITB e-approximates the maximal success rate in the long

run, in all prediction games whose success rates converge to limiting frequencies

(cf. Schurz 2008, Theorem 2).

Yet the access-optimality of eITB breaks down in games with non-convergent

success-oscillations of the non-MI-players. The worst case involves systematic

deceivers who are assumed to know when the meta-inductivist will choose them as

favorite. Systematic deceivers deliver a false or minimal-score prediction whenever

they are ITB’s favorite, otherwise they predict as accurately as possible. In the

presence of eITB, the success rates of systematic deceivers oscillate around each

other with a non-diminishing amplitude greater than e, with an exponentially

increasing time period. Figure 3 represents a computer simulation of a prediction

game pitting eITB (and AW, to be introduced below) against four systematic

deceivers: While eITB’s success rate converges to zero, the deceivers’ success rates

approximate 3/4 (the success curve of the method AW will be explained in the

section on ‘‘Attractivity-Weighted Meta-Induction’’.

Theorem 2 informs us that the negative results for ITB and eITB (Figs. 2, 3)

generalizes to all one-favorite meta-inductive methods, which (by definition)

imitate, at each time point, the prediction of a single non-MI-player (or cue). More

generally, one-favorite meta-inductivists cannot be long-run optimal if the success

rates of the non-MI players are negatively correlated with their position of being

MIx’s favorite. A Proof of Theorem 2 is found in the Appendix.

Theorem 2 For every prediction game {(e), {P1, …, Pm, MIx} in which MIx is a

one-favorite meta-inductivist:

2:1. If for all i [ {1, …, m}, Pi is a systematic deceiver, then (a) lim-

suc(MIx) = 0, but (b) limsuc(Pi) = (m - 1)/m.

2:2. If for every i [ {1, …, m}, Pi’s limiting success rate exists and is negatively

correlated with Pi’s position of being MIx’s favorite, MIx is not long-run

optimal, i.e., maxlimsuc - limsuc(MIx)[ 0.

Fig. 3 Binary prediction game with eITB and AW against four systematic deceivers with non-
convergent success-oscillation (e = 0.05)
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Theorems 1 and 2 also have important implications for prediction tournaments

that are not based on online learning but on random sampling. Following from the

laws of IID random sampling, probabilistic correlations between past events or

predictions (training set frequencies) and future events (test set frequencies) are

impossible in the long run. This implies that ITB is guaranteed to be access-optimal

in the long run, if the sequences of events and scores are IID sequences.

It may be objected that long run results are irrelevant for humans making

practical decisions. Similarly, ITB’s short-run performance is determined by a

‘winning time’ which may occur arbitrarily late. But keep in mind that Theorem 1

reflects the worst possible case. Under more induction-friendly probabilistic

assumptions, one can obtain better short-run results for ITB. Assume, for

simplicity, a prediction game with two players P1 and P2 whose success-scores are

generated by IID probabilities, and the difference between the success

probabilities of P1 and P2 is 2d. Let p1[2 denote the probability that time point

n is a winning time for P1. Then p1[2 = (1 - pd)
2, where Pd is the probability that

for some m C n, |sucm(Pi) - pi|[ d holds (with pi = limsuc(Pi)). pd can be

shown to be upper bounded by (c/n0.5)�xn/(1 - x), with c ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � p � d
p

and

x ¼ 1=e0:5�d2

.8 For n = 1000 and d = 0.1 this gives p0.1 B 0.1 and

p1[2 C 0.92 = 0.81. In the worst case ITB favors P2 until time 1000, and by

IID-laws suc1000(P2)[ limsuc(P2) - 0.04 is almost certain. So with p[ 81 %

ITB’s short run loss after n rounds is smaller than 0.24�(1000/n) = 240/n.

Concerning the limitative results of Theorem 2 for ITB and other kinds of one-

favorite meta-induction, one could argue that in real-life situations, adversarially

fluctuating success rates almost never occur. However, they do occur in social

environments in which predictions have a negative feed-back effect on the social

structure to be predicted—which is one of the possible causes of biased sampling in

real environments. An example which illustrates this possibility concerns the

prediction of stock values in a so-called bubble economy: Here it is predicted that a

given stock will yield a high rate of return, which leads many investors to put their

money in this stock, and by doing so cause it to crash (since this stock lacks

sufficient economic support). In such a situation it would be a bad recommendation

to always put all of one’s money into the stock that is presently most successful

(which would be ITB’s strategy), instead of distributing it over several stocks. The

latter strategy corresponds to the weighting methods which are discussed in the

sections on ‘‘Attractivity-Weighted Meta-Induction’’ and ‘‘Local Improvements’’.

8 For fixed n we approximate pðjsucn � pj � dÞ � c=ðn0:5 � e0:5�n�d2 Þ (see de Finetti 1974, sect. VII.5.4).

pd is upper bounded by the infinite sum c � Rn� i�1ð1=ði0:5 � e0:5�i�d2 ÞÞ. This sum is lower-equal

(c/n0.5)�RnBiB?xi), which is (by the sum-formula for a convergent geometric series) equal to

(c/n0.5)�xn/(1-x).
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Take-the-Best (TTB)

With minor modifications all results about ‘‘Imitate-the-Best (ITB)’’ generalize to

the strategy Take-the-best (TTB) within games with intermittent players. In such

games, TTB selects at every time n that player as its favorite whose validity is

greatest among those players who delivered a prediction (with ties resolved

according to an arbitrary ordering). If no player delivers a prediction, TTB predicts

according to a random guess.

In other words, TTB is the intermittent version of ITB. In what follows, we

generally write ‘‘iMIx’’ for the intermittent version of the meta-inductive strategy

MIx. Thus, TTB = iITB. The intermittent strategy iMIx differs from the persistent

strategy MIx only in games with intermittent players: Here iMIx bases its success

evaluation on validities, while MIx bases its success evaluation on success rates,

scoring non-predictions as random guesses. We speak here of intermittent versus

persistent success evaluation.

Within research on adaptive rationality, prediction competitions have been

frequently performed in the following comparative format: ‘Players’ must predict

which of two randomly selected objects A, B has a higher value on a given criterion

variable X (e.g., city size), based on various binary cues CiA/B [ {1,0} for the two

objects A, B (e.g., having a first division soccer team). The cue-difference

Di =def CiA - CiB [ {1,0,-1} is taken as the prediction variable: The cue Ci

predicts XA[XB if Di = 1 and XB[XA if Di = -1. If Di = 0, the cue Ci doesn’t

deliver a prediction (note that draws XA = XB are assumed to be absent). Table 1

lists the correspondences between these formats.

From Table 1, we see that comparative prediction tasks can be subsumed under

binary intermittent prediction tasks, where 1 is mapped to 1, -1 is mapped to 0, and

0 is mapped to ‘‘no prediction’’. For this reason, all formal results concerning binary

prediction games apply to comparative ones. We therefore expect that the shift from

the comparative to the binary format doesn’t cause any significant changes in

results. The shift from binary to real-valued prediction games is more significant

(see the section on ‘‘Attractivity-Weighted Meta-Induction’’, and the last section).

Independent of the prediction format, TTB’s success rate converges (provably) to

a weighted average of the validities of the intermittent non-MI-players, if these

Table 1 Correspondences between different formats of prediction games

Format Real-valued Binary Comparative

Events e: Event-interval

e [ [0,1]

Yes–No

e [ {0,1}

Which has greater X-value?

e [ {XA[XB, XA\XB}

Prediction of player/cue P: pred [ [0,1] pred [ {0,1} pred = XA[/\XB iff DP = 1/-1

where DP is P’s cue-difference

Intermittent: Sometimes no pred. is delivered by P No pred. is delivered if DP = 0

Score of pred.: 1 - |e - pred| 1 if pred. is correct, otherwise 0

Success rate: Average score Frequency of correct predictions
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validities are convergent and conditionally independent from each other. Figure 4

illustrates the performance of TTB in a binary prediction game satisfying this

condition. Since the non-MI-players’ validities are greater than random successes,

TTB’s success rate is significantly greater than the (random-guess-updated success

rates of the non-MI-players. TTB’s success is also greater than the success rate of

ITB, which imitates the ‘random guess’ of the so far best player, whenever this

player doesn’t deliver a prediction, rather than searching (as TTB) for the next-best

player who delivers a prediction. So TTB enjoys an additional advantage over ITB

in prediction games with intermittent players.

Theorem 3 generalizes the result of Fig. 4. According to this theorem, the meta-

level optimality of TTB requires that after a certain convergence time the entire

success-ordering of the non-MI-players becomes stable, and not only the top non-

MI player (as in the case of ITB):

Theorem 3 For each prediction game ((e), {P1, …, Pm,TTB}) with intermittent

non-MI-players who converge to a stable validity ordering Ps1
; . . .; Psm

ð1� si �mÞ
after a stabilization time s, and whose conditional validities (see below) are better

than the success of a random guess after s, the following holds:

3:1. (Short-run)

(a) sucn TTBð Þ�R1� k�mvaln Psk
jfav-Psk

ð Þ � freqn fav-Psk
ð Þ � s/nð Þ:

Here ‘‘freqn fav-Psk
ð Þ‘‘ is the relative frequency of times (until time n) for

which player Psk
was TTB’s favorite, i.e., for which the kth best player but

no better player delivered a prediction, and ‘‘valn Psk
jfav-Psk

ð Þ‘‘ is the

success rate of Psk
(at time n) conditional on those times.

(b) sucn(TTB)[maxsucn - (s/n) C sucn(ITB) - (s/n).

3:2. Long run results are obtained from 3.1 by omitting ‘‘s/n’’ and replacing finite

frequencies by their limits. For example, instead of (3.1)(b) we have:

limsuc(TTB)[maxlimsuc C limsuc(ITB).

A Proof of Theorem 3 is found in the Appendix. Note that, according to Theorem

3, what is relevant for TTB’s predictive success is not the players’ validities

Fig. 4 TTB in a binary prediction game playing against three intermittent non-MI-players delivering a
prediction in 60 % of all rounds
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simpliciter but their validities conditional on the times for which no better player

delivered a prediction. In the case where the players’ validities are conditionally

independent, one may replace the conditional validities in Theorem 3.1 by the

unconditional validities, valn Psk
ð Þ (cf. fn. 13).

The modified TTB-method which uses the conditional validities instead of the

unconditional ones is called ‘‘greedy TTB’’ by Schmitt and Martignon (2006). They

argue that greedy TTB is provably better that ordinary TTB. But this only holds if

the conditional validities are known. Brighton and Gigerenzer (2012, p. 44) show

that in situations of learning from not too large samples, greedy TTB is less

successful than simple TTB. The reason for this is the already mentioned problem of

overfitting: Greedy TTB frequently fits its estimated conditional validities to

random accidentalities of the sample which disappear when the samples size grows

larger. A similar effect arises in situations of online learning, since conditional

validities converge more slowly than ordinary validities.

The short-run performance of TTB depends on the stabilization time for ordinary

validities: If it occurs late, TTB’s short-run performance will be bad. As in the case

of ITB in Fig. 2, TTB’s performance is particularly bad in prediction games with

players whose success rates are negatively correlated with their being imitated by

TTB. More precisely, Theorem 2 holds also for TTB, because TTB is a one-favorite

meta-induction method.

Attractivity-Weighted Meta-Induction (AW) and the Problem
of Induction

Are there meta-inductivist strategies which can handle systematic deceivers and,

hence, are universally access-optimal? Yes, although only in the long run. Generally

speaking, all weighted meta-inductive methods predict a weighted average of the

predictions of the non-MI-players. The crucial property of universally access-

optimal meta-inductive methods is that the weights of the non-MI-players are

identified with their attractivities, which from MI’s viewpoint are called regrets (cf.

Cesa-Bianchi and Lugosi 2006, Sect. 2.1). Attractivity weights have so far not been

studied in the ecological rationality literature. In what follows, we use ‘‘AW’’ to

denote the attractivity-weighted meta-inductivist. The attractivity of a player P for

AW, at a given time, is the surplus of her success rate compared with AW’s own

success rate at that time:

atn Pð Þ ¼def sucn Pð Þ � sucn AWð Þ; if this expression is positive; else atn Pð Þ ¼ 0:

AW’s predictions are defined as follows:

prednþ1 AWð Þ ¼
P

1� i�m atnðPiÞ � prednþ1ðPiÞ
P

1� i�m atnðPiÞ
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When the denominator is zero, AW’s prediction is identified with the prediction of

the player with maximal success rate at time n9 (which at n = 1 or if no player

predicts is identified with a random guess).

Even if the success rates of adversarial players oscillate around each other, AW

does not favor just one of them, but predicts an attractivity-weighted average of the

correctly and incorrectly predicting adversaries, and so doesn’t fall into the same

trap as ITB. Figure 3 in the ‘‘Imitate-the-Best (ITB)’’ section illustrates this fact: In

contrast to eITB, AW is not deceived but approximates the maximal success of the

deceivers.

The important mathematical result concerning AW is stated in Theorem 4. It

does not hold for all monotonic but only for all convex loss functions. A loss

function is convex if the loss for a weighted average of two predictions is less than

or equal to the weighted average of the losses for the two predictions. Convex loss

functions cover a wide class, including the natural linear loss function |predn–en| as

well as loss functions which are polynomial or exponential in |predn–en|.

Theorem 4 For every real-valued prediction game ((e), {P1, …, Pm, AW}) with a

convex loss-function, the following holds:

4:1. (Short run:) (Vn C 1:) sucn(AW) C maxsucn -
ffiffiffiffiffiffiffiffi

m/n
p

.

4:2. (Long-run:) sucn(AW) approximates the non-MI-players’ maximal success

for n ? ?.

Theorem 4 tells us that AW is indeed a universally access-optimal meta-

inductive strategy, in the long run. A proof of Theorem 4 is found in Schurz (2008,

th. 4); it refers to a central result from Cesa-Bianchi and Lugosi (2006, ch. 2.1,

Theorem 2.1, Corollary 2.1).

Theorem 4 does not directly apply to binary prediction games, because AW’s

predictions are real values between 0 and 1, which is forbidden in binary games.

Theorem 4 can be transferred to the prediction of binary events by interpreting

AW’s real-valued prediction r [ [0,1] as AW’s probability of predicting 1.10

In prediction games with intermittent forecasters, the performance of AW can be

improved by the intermittent version of AW, iAW. At each time, iAW ignores all

predictors who didn’t deliver a prediction. The ‘intermittent attractivities’ of the

predicting players (‘‘i-at(P)’’) are defined with the help of their validities, as follows:

i-atn Pð Þ ¼def valn Pð Þ � sucn iAWð Þ if this difference is positive; else i-atn Pð Þ ¼ 0:

Provided that these validities are better than the success rates of random guesses,

one can prove that the success rate of iAW exceeds that of AW, analogously to

9 This requirement guarantees that under the conditions of Theorem 3 the intermittent version of AW

approximates TTB in the long run.
10 Cf. Cesa-Bianchi and Lugosi (2006, ch. 4.2). The randomization method presupposes that the event

sequence does not react adversarially to AW’s predictions. For adversarial event sequences, Theorem 4

can be transferred by assuming a collective of binary meta-inductivists who approximate real-valued

predictions by the mean value of their binary predictions (cf. Schurz 2008, Theorem 5).
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Theorem 3. (We dispense with stating this as a formal theorem, since the basic facts

are clear.)

We now turn to the relevance of Theorem 4 for the philosophical problem of

induction. This problem goes back to David Hume and consists in the fact that it is

apparently impossible to justify the reliability of inductive inference without

reasoning in a vicious circle: By arguing that ‘‘we expect induction to be successful

in the future, because it was successful in the past’’, we presuppose what we wanted

to demonstrate, namely that induction is successful. In the area of computational

learning theory, Wolpert’s no free lunch theorem (1996) has deepened Hume’s

insights.

Hume’s skeptical results are compatible with the possibility of an ‘a priori’

justification of a meta-induction, by appeal to its access-optimality. The demon-

stration that a method M is optimal does not entail that M is successful, since M may

merely be the ‘best of a bad lot’. However, if one can demonstrate by a priori

arguments that meta-induction is universally access-optimal, then one can use this

to derive a non-circular a posteriori justification of ordinary object-level induction,

as follows: So far induction was most successful among all accessible prediction

methods, therefore by meta-induction (for which we have an independent

justification) it is rational to apply inductive methods in the future (cf. Schurz

2008, 2009).

Theorem 4 establishes an a priori justification of attractivity-based meta-

induction: In all environments, it is always reasonable (in addition to searching for

good candidate methods) to apply AW/iAW, as this can only improve but not

worsen one’s success in the long run. Given Theorem 4, we can not only infer that

AW is universally access-optimal, but even more, that AW is dominant (in the long

run) w.r.t. the class of all non-meta-inductive methods,11 since for every non-meta-

inductive method M’ one can construct ‘sufficiently normal’ environments in which

AW’s long run success exceeds that of M’, while AW is never worse than M’. Since

this fact seems to contradict Wolpert’s famous no free lunch theorem, an

explanation is in order.

Wolpert (1996, p. 34) proved that the probabilistically expected success of any

normal learning algorithm is equal to the expected success of random guessing or of

any other learning algorithm, under the assumptions of a uniform prior probability

distribution over all possible (completely specified) states of the world (Wolpert’s

‘‘targets’’). Wolpert’s theorem is a far-reaching generalization of an earlier result in

probability theory about the prediction of infinite binary sequences (cf. Carnap 1950,

p. 565; Howson and Urbach 1996, p. 189). For this application, Wolpert’s result says

the following: However the learning function f (with predn?1 = f((e1,…,en)) [ {0,1})

is defined, there are as many sequences of a given length k[ n that verify f’s

prediction as there are sequences of length k that falsify it. So by attaching an equal

probability to every possible sequence the expected score of each learning algorithm

11 This dominance-claim can be strengthened (cf. Schurz 2008, Sect. 9.2). But AW is not universally

access-dominant, since there are variations of AW with a different short-run performance.
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will be 1/2. This result applies equally to all meta-level selection strategies given that

they are applied to a finite toolbox of normal prediction methods.

Wolpert’s theorems make certain assumptions which do not hold for all

prediction games, e.g., the homogeneity of the loss function (ibid., p. 1377), which

holds for binary but not for real-valued events. But let us grant these assumptions,

and turn to a more fundamental problem behind Wolpert’s result: Wolpert’s

assumption that each particular world (binary sequence) has the same probability

density is itself strongly biased. For infinite sequences, this assumption entails that

one is subjectively certain (i.e., believes with probability 1) that (a) the sequence is

non-computable, and (b) has a limiting frequency of 1/2.12 However, the sequences

for which a prediction algorithm can be better than a random guesser are precisely

those that don’t fall into the classes (a) or (b). In other words, a uniform prior

distribution over all possible sequences entails that one is subjectively certain that

our world is completely irregular, so that induction has no chance.

It is well-known that if one assumes a prior distribution that is not uniform over

all possible sequences, but rather over all possible frequency limits of sequences,

then one validates the famous Laplacean rule of induction, p(en?1=1 | fn(1) = k)

= (k ? 1)/(n ? 2), where ‘‘fn(1)’’ denotes the number of 1’s among the first n

events (cf. Howson and Urbach 1996, p. 55ff). According to this prior distribution,

the optimal binary prediction rule predicts en?1 = 1 iff fn(1)[ 1/2 (cf. Schurz 2008,

§3). In computer science, the idea underlying the Laplacean induction rule has been

impressively generalized by Solomonoff (1964, §4.1), who proves (among other

things) that if the prior probability of a sequence is inversely proportional to its

algorithmic complexity, then one validates Laplace’s rule of induction.

In our eyes, Wolpert’s and Solomonoff’s results confirm the fact that Bayesian

results are always dependent on assumed prior distributions that are never

‘unbiased’ or ‘information-less’. This fact underscores the significance of the

non-probabilistic optimality results in dynamic online learning. Still there seems to

be a contradiction between Wolpert’s no free lunch theorem and the explained

dominance-interpretation of our Theorem 4, which asserts that the predictive long-

run success of AW is in no environment worse, but in ‘regular’ environments better

than the long-run success of any accessible non-inductive method. This contradic-

tion disappears if one recalls that the class of regular sequences has probability zero

according to Wolpert’s prior distribution and, thus, doesn’t count in the expectation

value. However, since evolution would be impossible in worlds without regularities,

we have every reason to take these probability-zero worlds seriously. This is what

meta-induction does: We cannot prove that meta-induction will be successful, but

we can prove that if anything will be successful, meta-induction will.

12 (a) follows from the fact that there are uncountably many sequences but only countably many

computable ones. (b) holds since the uniform prior distribution over {0,1}? implies p(ei|ej) = p(ei) = 1/

2, i.e., the distribution is IID, which entails (b) by the strong law of large numbers.
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Local Improvements Over Attractivity-Based Meta-Induction
at the Cost of Universal Access-Optimality

Are there any meta-strategies whose performance exceeds AW’s? This is an open

question. So far our findings support the following conclusions:

1. If these strategies are inaccessible to AW, and select from the same toolbox as

AW, the answer is: Yes, but their surplus success over AW is local, restricted to

specific types of environments, and comes at the cost of forfeiting universal

access-optimality.

2. If these strategies are themselves accessible to AW (i.e., belong to AW’s

toolbox), the answer is ‘‘No’’ in the long run (by Theorem 4), although their

short-run performance may exceed that of AW locally, at the cost of losing

universal access-optimality.

The apparent fact that improvements over AW come at the cost of losing

universal access-optimality is another ‘revenge effect’ of ecological rationality,

which we will illustrate using two examples: (1) success-weighted prediction

methods, and (2) improvements in short-run performance.

A class of weighting methods that has been frequently studied in the research on

adaptive rationality is success-based weighting. A particularly simple success-based

weighting method is ‘‘Franklin’s rule’’, here abbreviated as SW, which identifies the

players’ weights with their normalized success-rates:

prednþ1 SWð Þ ¼
P

1� i�m sucnðPiÞ � prednþ1ðPiÞ
P

1� i�m sucnðPiÞ

The corresponding intermittent variant of SW, abbreviated ‘‘iSW’’, identifies the

players’ weights with their normalized validities, and ignores (in the above sum)

those players who didn’t deliver a prediction in the respective round n.

While SW is better than AW and ITB in some environments,13 it is not

universally access-optimal: In some environments, SW’s success-rate may drop far

below the maximal success rates of the object-level players or cues, and the same

holds for iSW (see next section). For real-valued prediction games, this can be seen

from the following example: Assume two (linearly scored) forecasters P1 and P2

who invariably underestimate the value of the predicted event, where P2’s success

rate is permanently greater than that of P1 which is in turn greater than zero. Then it

is easy to prove that SW’s success rate will be permanently smaller than that of P2,

because P1’s weight will never become zero.

Attractivity-based weighting methods are protected against the preceding sort of

suboptimality, because they attach a weight of zero to all players whose success rate

is (significantly) smaller than their own. This measure ensures that AW’s success

13 See next section. Katsikopoulos and Martignon (2006) proved that under the condition of known

validities and ‘‘naive Bayes environments’’ (conditionally independent cue validities and uniform prior),

the logarithmic version of iSW that takes log(val(Pi)/(1 - val(Pi))) as the weight of cue Pi is

probabilistically optimal among all possible methods.
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rate (after some convergence time) grows above that of the suboptimal player P1.

From that time point on, AW imitates solely the optimal player P2, approximates

P2’s success, and is thus guaranteed to be universally access-optimal.

A second area in which the revenge of ecological rationality manifests itself is

short run performance. The worst case short run loss of AW is
ffiffiffiffiffiffiffiffi

m/n
p

, which is only

small if the number of competing methods m is small compared to the number of

rounds n of the prediction game—the so-called ‘‘prediction horizon’’. The worst-

case bound for the short-run loss of AW can be improved, but only if one knows the

prediction horizon in advance, which is a restrictive condition on prediction games.

Under this condition it is optimal to use exponential attractivity-weights (cf. Cesa-

Bianchi and Lugosi 2006, p. 16f).

AW with known prediction horizon h and exponential attractivity weights

(EAW):

Weight of player P at times n B h: wn Pð Þ ¼def e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�lnðm=hÞ
p

� atnðPÞ
Worst-case loss of EAW:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(m)/(2 � n)
p

The short run loss can be further reduced if the environment satisfies further

conditions. An example is the conditionalization of the success rates of the players

or cues to certain properties which reliably indicate a significant change of the

environment. The study of these possibilities is left to another paper.

In prediction games which have a unique best player after a certain winning time

(Theorem 1), AW’s predictions and success rates converge against the predictions

and success rates of ITB, because as soon as AW becomes better than some player

P, AW ignores P in the weighted average, until AW eventually assigns a weight of 1

to the best player. (Similarly, iAW approximates TTB in intermittent games.)

However, AW’s convergence to ITB takes some time. In the short run, ITB enjoys

an advantage over AW (and TTB over iAW) in those prediction games in which the

cue validities converge quickly to a unique ordering. So again AW has to pay a price

for its long-run optimality.

The ‘revenge of ecological rationality’ puts us in a certain dilemma: On the one

hand, we have a meta-level strategy AW which is universally access-optimal in the

long run. On the other hand, we have methods whose performance may exceed that

of AW in the short run—and if they are inaccessible to AW even in the long run—

but at the cost of losing universal access-optimality. We propose to solve this

dilemma by the following division of labor: If the performance of a prediction

strategy exceeds that of AW in some local environments, then we should not use

this strategy as our meta-level selection strategy, but we should put it into the

toolbox of locally adapted candidate methods. As one’s meta-level selection

strategy, one should employ a strategy which is known to be access-optimal.

In situations of dynamic online learning this is AW (or iAW). If we find a meta-

strategy S* (e.g., SW) which is more successful than AW in some environments,

then we should not try to improve our success by replacing AW by S* at the meta-

level, but by putting S* into the toolbox of candidate methods and applying AW to

this extended toolbox.
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Our proposed division of labor between general selection strategies and locally

adapted methods solves the explained dilemma, at least in the long run: Since AW

imitates S* in those and only those environments in which S*’s success is greater

than that of the other players, AW enjoys S*’s local long-run advantage without

suffering from its drawbacks in other environments. In the short run, however, AW

may still suffer a certain delay and thus a loss when imitating S* in those

environments to which S* is locally adapted. A complete avoidance of the revenge

of ecological rationality in the short run is, thus, impossible.

Meta-Induction Within the Monash University Footy Tipping
Competition: Results of an Empirical Study

In the final part of this paper, we describe a retrospective empirical application of

the discussed meta-inductive strategies to the results of one of the world’s longest-

running prediction competitions, the Monash University footy tipping competition

(MUFTC). The event sequence that we consider consists of the 3-valued results of

1514 matches of the Australian Football League (1, 0, or tie) over 8 seasons from

2005 to 2012, recorded at the MUFTC website.14 The prediction of each match

constitutes one round of the prediction game. Our tournament included the

predictions of all 1071 human participants, as well as the predictions of different

meta-inductive strategies that were applied to these predictors (while the meta-

inductive strategies were mutually inaccessible). Predictors had to specify the

winning probability of the first of two teams. We scored their predictions by a linear

loss function.

The MUFTC tournament presented a significant challenge for meta-inductive

strategies for the following reasons:

1. Individual participation was highly intermittent: Only 69 (31) out of the 1071

players made predictions for at least 1/2 (3/4) of the matches. Many players

entered the game in the midst of the season for several rounds and distracted the

meta-inductive algorithms by lucky initial successes. For this reason, we

considered ‘‘subgames’’ of the competition where the player set was reduced,

for example to the subset of 69 players who made predictions in at least 1/2 of

the rounds.

2. The success rates of the players were quite close together (0.49–0.62). Their

validities differed more strongly, but because of many players predicting only a

few times, the validity dispersion was not conclusive.

3. Even for players who predicted very frequently the success rates were not much

higher than the success of random guessing. So there were no strong effects that

the meta-inductivist strategies could exploit.

4. The number of competing players (1071) was not much smaller than the

number of rounds (1514), which means that from the perspective of AW, the

tournament was not a long run but only a short run experiment.

14 http://www.csse.monash.edu.au/*footy/.
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Nevertheless we obtained many interesting and surprising results.

Result 1 The actually obtained short run losses were much smaller than the

theoretically calculated worst-case short run losses. This result is shown in Table 2.

While in 6 out of the 8 seasons there was a different best player, AW and ITB

was among the top players, in each season. Moreover, in all considered subgames,

the success rate of AW and ITB was close to the maximal success rate of the human

participants. The same was not true for SW and CSW. This fact reflects the access-

optimality of AW and ITB in the considered subgames.

Result 2 In spite of the low dispersion of success rates, ITB was almost always

better than the success-based weighting method SW (recall fn. 2). ITB was also

better than the method CSW, which stands for ‘‘chance-adjusted success-weight-

ing’’. This is a variant of SW proposed in Jekel et al. (2012), which identifies the

weight of a predictor with its success rate minus the success rate of random

guessing.

Figure 5 illustrates this effect, charting the performance of the four meta-

inductive methods SW, CSW, AW and ITB, which employ a persistent success

evaluation, amidst the 69 players who predicted at least 1/2 of the time. We see that

SW and CSW are clearly below AW and ITB, while CSW is slightly above SW.

Moreover ITB is slightly above AW, with diminishing success differences for

increasing numbers of rounds. At the end of the game, ITB and AW come close to

the maximal success rate of the human players, represented by the solid black line:

Instances of the triangular icon indicate a switch of the top human player. The

dotted black line represents the success rate of that human player who had the

highest success at the end of the game (and is occluded by the black line, once that

player achieves the maximal success rate).

Result 3 (Intermittent success evaluation) Human predictors with the highest

success rates also tended to make the most predictions. Conversely, predictors

whose validities differed significantly from their success rates predicted rarely. So in

most rounds the players with the highest success rate were identical with the players

with the highest validity. Therefore there were not many effects to be exploited by

the intermittent versions of the meta-inductive algorithms (TTB, iAW, iSW, and

iCSW) in prediction games with the 69 most frequent human predictors.

Table 2 Theoretical worst-case loss of AW and EAW and empirical loss of AW compared to the

maximal success rate, in the subgame with 31 players who predicted at least 75 % of the time

Round AW:
ffiffiffiffiffiffiffiffi

m/n
p

EAW:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(m)/(2 � n)
p

AW: obtained

20 ‘‘extremely short’’ 1 0.29 0.025

100 ‘‘very short’’ 0.56 0.13 0.026

500 ‘‘short’’ 0.25 0.06 0.006

1500 ‘‘medium’’ 0.14 0.034 0.005

10,000 ‘‘long’’ 0.05 0.01 (expected: 0)
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To study the impact of intermittent success evaluation, we investigated a

subgame consisting of the 50 human players with the highest validities. The

validities of these players differed significantly from their success rates, because

they predicted with low frequency. In this subgame, we expected the intermittent

versions of the meta-inductive strategies to demonstrate their advantage over

persistent strategies. This expectation was confirmed. Figure 6a shows the result of

the described subgame, with four interesting sub-results:

1. The intermittent meta-inductive strategies performed much better than their

persistent versions, which for the sake of comparison are shown in Fig. 6b.

2. The success rates of the intermittent meta-inductive strategies climbed above

the maximal success rate of the human players (as explained in the ‘‘Take-the-

Best (TTB)’’ section).

3. In the beginning of the game, the intermittent weighting methods were better

than TTB. Here TTB suffered due to the ongoing appearance of new players:

When a new player P’s first prediction had a high score (by luck), but his second

prediction scored low, TTB imitated P’s second prediction and earned a loss.

We experience here a kind of the TTB-adversarial scenario which was

theoretically described in the ‘‘Imitate-the-Best (ITB)’’ and ‘‘Take-the-Best

(TTB)’’ sections (Theorem 2).

4. iSW had an even higher success rate than iAW in this game. This demonstrates,

empirically, the effect which was theoretically described in the previous

section, that in some environments SW’s performance may be greater than that

of AW. Of equal interest is the fact that, in this game, the chance-adjusted

method iCSW performed slightly worse than iSW, which refutes the conjecture

Fig. 5 Results of the footy tipping competition, subgame with 69 players who predicted at least 50 % of
the time

The Revenge of Ecological Rationality: Strategy-Selection… 55

123



in Jekel et al. (2012, p. 12), according to which iCSW is expected to be

generally better than iSW.

For the sake of comparison with the usual setting of prediction studies in adaptive

rationality research (cf. fn 3), we ran two variants of our data set.

In Footy Variant 1, we re-ran the footy tipping prediction games under the

condition that the success rates and validities were estimated by random sampling

from future events. Here we found that both ITB and AW performed better in the

case of continuous success updating via online learning, as compared to success

evaluation based on random sampling. The success ordering between the meta-

inductive methods (ITB, AW, SW and CSW) remained the same as in Fig. 5.

Fig. 6 Footy tipping subgame with the 50 human predictors with the highest validities. a Intermittent
success evaluation, b persistent success evaluation
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In Footy Variant 2, we transformed the footy tipping prediction games into a

binary comparative format by the following scale transformation: The cue-

difference of cue (player) Pi is ?1/0/-1 iff its real-valued (probabilistic) prediction

lies in the interval [0.55,1]/(0.45,0.55)/[0,0.45], respectively. Our major result was

that a scale transformation from the real-valued into the binary-comparative format

worsened the success of TTB compared to weighting methods. This result agrees

with the finding reported in Katsikopoulos et al. (2010, p. 1265).

Detailed reports of Footy variants 1 and 2 are left to future studies.

Summary and Conclusions

The study of prediction games under conditions of dynamic online learning raises

new questions about adaptive rationality. We discussed competing research

programs concerning the question of the local adaptivity versus the generality of

prediction strategies, and argued for a division of cognitive labor between locally

adapted methods and meta-inductive selection strategies. We presented mathema-

tical theorems concerning the optimality of different meta-inductive strategies in

regard to their accessible object-level methods, a property that we called access-

optimality. We showed that one-favorite methods such as ITB and TTB are access-

optimal in environments with stabilizing success-orderings, but in environments

with adversarial success-oscillations (keyword ‘‘bubble economy’’) their success

breaks down. We then showed that there is a meta-inductive strategy, attractivity-

based meta-induction AW, which is universally access-optimal in the long run. The

performance of AW can be improved upon, but only locally, and at the cost of

forfeiting universal access-optimality. We called this situation the ‘‘revenge of

ecological rationality’’.

In the final section, we presented an empirical study based on data from the

Monash University footy tipping tournament. The results of our study confirmed our

theoretical results and expectations. We observed that: (1) AW and ITB (but not SW

or CSW) were approximately access-optimal in regard to the human predictors in all

subgames of the tournament, (2) in most subgames, ITB and AW were highly

successful, (3) the performance of SW and CSW exceeded that of ITB and AW in

only a few subgames, while in most subgames SW and CSW were inferior to ITB

and AW, and (4) in subgames with rarely predicting players, the intermittent

versions of meta-inductive strategies exhibited significantly improved performance,

compared to their persistent cousins.
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Appendix

Proof of Theorem 2 For 2.1(a): Since xMI’s imitates for each time n[ 1 some

deceiver Pi, xMI’s score for all times[ 1 is 0, and so limsuc(xMI) = 0. For 3.1(b):

On average, xMI imitates each player equally often, with a limiting frequency of 1/m.

So the frequency of times for which each player earns a maximal score of 1 is (m - 1)/m.

For (2.2): Let ‘‘p(fav-Pi)’’ be the limiting frequency of times for which player Pi was

xMI’s favorite, and limsuc(Pi|fav) be player Pi’s limit success conditional on these

times. Then by probability theory, limsuc(xMI) = R1BiBmp(fav-Pi)�limsuc(Pi|fav),

which implies that limsuc(xMI) B max({limsuc(Pi|fav):1 B i B m}). By the nega-

tive correlation assumption, limsuc(Pi|fav))\ limsuc(Pi) holds for all i [ {1, …, m};

so limsuc(xMI)\max({limsuc(Pi):1 B i B m}) =def maxlimsuc. Hence xMI is not

long-run optimal. h

Proof of Theorem 3 For 3.1(a): Before the convergence time s, TTB may be, in

the worst case, permanently deceived by the non-MI-players (or cues), by

negatively correlated success-oscillations. So TTB’s worst-case success until time s

is zero, whence his worst-case loss at times n C s is s/n. After time point s, TTB’s

earns for each kth-best player (or cue) Psk
the sum-of-scores earned by Psk

, for all

time points at which Psk
but no player better than Psk

delivered a prediction. The

sum-expression in 3.1(a) is identical with the sum of these scores divided by time n.

For 3.1(b): Additionally we assume that after time s each player’s validity is better

than the success of a random guess, which is 1/2 in a binary prediction game. This

implies that sucn(TTB)[maxsucn - (s/n), where maxsucn C sucn(ITB) since ITB

approximates maxsucn from below (by Theorem 1). (3.2) follows from (3.1) in the

explained way, since limn??(s/n) = 0. h
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