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Abstract In attempting to form rational personal probabilities by direct inference,
it is usually assumed that one should prefer frequency information concerning more
specific reference classes. While the preceding assumption is intuitively plausible, lit-
tle energy has been expended in explaining why it should be accepted. In the present
article, I address this omission by showing that, among the principled policies that
may be used in setting one’s personal probabilities, the policy of making direct infer-
ences with a preference for frequency information for more specific reference classes
yields personal probabilities whose accuracy is optimal, according to all proper scor-
ing rules, in situations where all of the relevant frequency information is point-valued.
Assuming that frequency information for narrower reference classes is preferred, when
the relevant frequency statements are point-valued, a dilemma arises when choosing
whether to make a direct inference based upon (i) relatively precise-valued frequency
information for a broad reference class, R, or upon (ii) relatively imprecise-valued
frequency information for a more specific reference class, R′ (R′ ⊂ R). I address
such cases, by showing that it is often possible to make a precise-valued frequency
judgment regarding R′ based on precise-valued frequency information for R, using
standard principles of direct inference. Having made such a frequency judgment, the
dilemma of choosing between (i) and (ii) is removed, and onemay proceed by using the
precise-valued frequency estimate for the more specific reference class as a premise
for direct inference.
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1 Introduction

Direct inference typically proceeds from two premises of the following sort: The first
(minor) premise states that a given object, c, is an element of a reference class R.
The second (major) premise states that the frequency with which members of R are
members of a respective target class, T, is r. The conclusion of the direct inference
is then that the probability that c is a member of T is r. In order to abbreviate the
description of such inferences, I use the notation “PROB” to refer to a probability
function that takes propositions as arguments, and is understood as designating the
(potentially imprecise) personal probabilities (or degrees of belief) that are rational
for a respective agent, given the evidence that the agent has. So the injunction to infer
a given personal probability statement, PROB(α) = r, is tantamount to the injunction
to infer that the personal probability r is rational for the proposition α, given one’s
evidence. I use the notation “freq” (for “frequency”) to refer to a function that takes a
pair of sets as an argument, and returns the relative frequency of the first set among the
second. So “freq(T|R) = 0.5” expresses that the relative frequency of Rs (elements
of R) that are Ts (elements of T) is 0.5. Given this notation, typical instances of direct
inference satisfy the following schema:

From c ∈ R and freq(T|R) = r infer that PROB(c ∈ T) = r.

Instances of the preceding schema are, of course, defeasible. A particular condition
under which instances of the schema are (usually taken to be) defeated is the central
concern of the present article. In particular, it is typically held that, in cases where
two instances of the preceding schema yield conflicting conclusions regarding the
probability of some proposition c ∈ T, one should form one’s conclusion regarding
the value PROB(c ∈ T) by the direct inference that employs the narrower reference
class, provided the reference class for one of the two direct inferences is narrower than
the other (according to the proper subset relation).1

The doctrine that one should prefer frequency information for more specific refer-
ence classes in conducting direct inference is intuitively plausible. The prior intuitive
plausibility of the doctrine probably explains why its advocates haven’t taken much
care to argue for it, including Venn (1866), Reichenbach (1949), Kyburg (1974), Pol-
lock (1990),Bacchus (1990),Kyburg andTeng (2001), andThorn (2012).2 Myprimary

1 In fact, further qualifications are required in order to exclude degenerate direct inferences (cf. Pollock
1990; Kyburg and Teng 2001; Thorn 2012). The problem of excluding degenerate direct inferences does
not arise within the simple sorts of population model considered in Sect. 2. In Sect. 3.5, I will say a little
bit about the problem of excluding degenerate direct inferences.
2 Pollock (1990, p. 86) asserts that the preference for narrower reference classes is a ‘kind of’ total evidence
requirement. This may be. However, there is no straightforward way to direct the force of arguments in
support of Carnap’s Principle of Total Evidence in order to support a preference for narrower reference
classes. Indeed, Carnap’s principle of total evidence (1962, p. 211) prescribes that one’s posterior probability
for a proposition α be identical to one’s prior probability for α conditional on one’s complete body of
evidence. So in a case where one’s complete body of evidence consists of freq(T|R) = 0.6, freq(T|R′) =
0.9,R′ ⊆ R, and c ∈ R′, Carnap’s principle prescribes that one’s posterior probability for c ∈ T be identical
to one’s prior probability for c ∈ T conditional on freq(T|R) = 0.6∧ freq(T|R′) = 0.9∧R′ ⊆ R∧ c ∈ R′.
However, since one’s prior probability for c ∈ T conditional on freq(T|R) = 0.6∧ freq(T|R′) = 0.9∧R′ ⊆
R ∧ c ∈ R′ need not be 0.9, the preference for narrower reference classes does not follow from Carnap’s
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aim in the present article is to address this omission. From the outset, I acknowledge
that many may find the prior intuitive plausibility of the doctrine that one should favor
more specific reference classes to be greater than some of the assumptions that I will
make in defending the doctrine. But my goal is not, merely, to preach to the converted,
i.e., those that find the doctrine highly plausible solely on the basis of prior intuitions.
Rather, my goal is to provide independent reasons for the policy of preferring more
specific reference classes. To this end, I show that the policy of using direct inference
with the most specific applicable reference classes yields personal probabilities whose
accuracy is optimal, according to all proper scoring rules. The optimality results pre-
sented here are similar to the accuracy based considerations adduced by Joyce (1998)
in favor of probabilism. The proposed defense of direct inference, with a preference
for more specific reference classes, is also similar to the defense of updating by con-
ditionalization by appeal to expected accuracy maximization, as found in (Greaves
and Wallace 2006) and (Leitgeb and Pettigrew 2010b), and generalized in (Easwaran
2013).

The following section of the paper presents the basic optimality results for the
policy of preferring frequency information for more specific reference classes in con-
ducting direct inference. While the results are suggestive, they properly apply only
to situations where an agent has access to point-valued frequencies (for the relevant
target class) for the most specific relevant reference classes. Section 3 introduces sev-
eral measures that are aimed at mitigating the limitations of the results presented in
Sect. 2. First, analogues of the results of Sect. 2 are introduced that show that the
policy of making direct inferences (with a preference for narrower reference classes)
based on expected frequencies maximizes expected accuracy. Similar to the results of
Sect. 2, the results concerning direct inference based on expected frequencies apply
only to situations where an agent has access to point-valued expected frequencies for
the most specific relevant reference classes. To mitigate this limitation, two meth-
ods of inferring precise-valued expected frequencies are introduced. In a wide range
of cases, the methods permit one to infer a precise-valued expected frequency for a
reference class, R′, based on precise-valued frequency information for a set R that
is a superset of R′. Both methods proceed by locating R′, itself, in an appropriate
reference class (a set of subsets of R), and then drawing a series of conclusions (by
direct inference) about the probability that the frequency of T among R′ takes various
values. These conclusions are then used to infer the expected frequency of T among
R′. As I will explain, in Sect. 3, the two proposed methods are of independent interest
(beyond mitigating the limitations of the described optimality results), since they are
applicable to addressing the general problem of choosing between direct inferences
based on (i) precise-valued frequency information for broad reference classes, versus
(ii) imprecise-valued frequency information for more specific reference classes.

Footnote 2 Continued
principle. Perhaps rational personal probabilities are structured in such a way as to generate a preference
for narrower reference classes, when updating by conditionalization (cf. Thorn 2014). Whether this is the
case is something that would need to be argued for, independently of the Principle of Total Evidence.
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2 The optimality of preferring more specific reference classes

In order to demonstrate the virtues of reasoning by direct inference using the most
specific applicable reference classes, I propose that we use a simple ‘test environment’,
in order to evaluate various ‘policies’ for forming personal probabilities. For this
purpose, I introduce the notion of a population model M, which is a triple 〈U, T, �〉,
consisting of a domain of objects U, a subset T of U (where “T” stands for “target
class”), and a partition � = {π1, . . . , πn} of U, where � corresponds to the set of
maximally specific descriptions within which we are able to assign elements of U.3

The task of respective policies will be to recommend accurate probability judg-
ments concerning which members of U are in T. In making their recommendations,
our policies may avail themselves of information about the relative frequency of mem-
bership in T among objects falling within various categories. While � specifies the
most specific categories that are distinguishable, our policies may consider the relative
frequency of membership in T among the broad class of categories consisting of the
algebra of subsets of U that is formed by unions of elements of �. I call this algebra
“F”, which is defined: F = {f : f = ∪A ∧ A ⊆ �}.4

I begin by considering the case where it is known which objects are elements of
which elements of�, and our policies have access to the relative frequency of T among
each and every element of �, where freq(T|π) = |{x : x ∈ π ∧ x ∈ T}|/|{x : x ∈ π}|,
for all π in �. For each object, x, in U, the task of a policy is to recommend a degree
of belief in the proposition that x is in T. In other words, the task is to recommend a
(credence) function from U into [0, 1], which represents degrees of belief regarding
the truth value of x ∈ T, for each x in U. My intention here is to demonstrate the
optimality of the following policy, δ, which corresponds to using direct inference with
the most specific applicable reference classes:

Relative to a respective population model M, let δ(x ∈ T) = freq(T|π), for all x,
where π is the element of � containing x.

The policy corresponding to δ is not optimal in comparison to all possible policies,
with respect to all possible population models (for example, in comparison to the
‘oracular’ policy, ν, that precisely tracks the truth value of all relevant propositions,
i.e., ν(x ∈ T) = 1, if x ∈ T, and ν(x ∈ T) = 0, otherwise). However, δ is optimal
(given a restriction on admissible accuracy measures) in comparison to (the poli-
cies represented by) the following credence functions, whose value assignments are
‘principled’:

3 In the circumstance of making a judgment about the probability that an object c is a member of T, it is
always possible to introduce a description of maximal specificity, which denotes the unit set consisting of
the very object about which one is reasoning. It is reasonable to ignore such descriptions, in cases where we
have no substantive information concerning the value of freq(T|{c}). So, in the present section, I take the
reasonable course of ignoring such descriptions. But see Sect. 3.3, which considers the proper treatment of
reference classes for which one has no prior frequency information, and provides a more adequate treatment
of the present issue.
4 Note that the present specification of categories represents a generalization of the case where F is the set
of all subsets of U, which corresponds to the case where of � = {{x} : x ∈ U }.
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Definition A credence function, χ , is principled in M if and only if5

∀π ∈ � : ∀x,y ∈ U: if x ∈ π and y ∈ π, thenχ(x ∈ T) = χ(y ∈ T).

The preceding definition tells us that a credence function is principled just in
case, for each pair of objects, the same credence is assigned to both elements of
the pair, regarding membership in T, if the two objects have exactly the same prop-
erties, among the set of properties that one is able to distinguish. Notice that δ is
principled. On the other hand, the restriction of our concern to principled credence
functions excludes oracles, along with other policies that succeed by assigning dif-
ferent probabilities to objects that are indistinguishable, from the point of view of the
policy.6

The optimality of δ is dependent on how we measure accuracy. I here adopt the
common parlance, and refer to accuracy measures as “scoring rules”. Formally, I here
treat a scoring rule, S, as a function from pairs consisting of the credence assigned
to a proposition, χ(α), and the proposition’s truth value, as represented by a standard
truth-valuation function, ν. So “S(χ(α), ν(α))” would return the score for the credence
function, χ , regarding the proposition, α, given α’s truth value, ν(α). Since we only
consider propositions concerning whether given elements of U are in T (according to
a given population model M), the application of scoring rules, in the present article,
takes the following form: S(χ(x ∈ T), ν(x ∈ T)) (where everything is implicitly
relativized to M).

As it turns out, the optimality of the policy represented by the credence function δ

holds for a broad class of highly esteemed scoring rules, namely the set of all proper
scoring rules. A scoring rule is proper just in case the expected score earned according
to the measure is maximized by reporting one’s actual personal probabilities, i.e.:7

Definition S is a proper scoring rule if and only if

∀r,s: S(s, 1) × s + S(s, 0) × (1 − s) ≥ S(r, 1) × s + S(r, 0) × (1 − s).

This is not the place to summarize all of the arguments that have been made in favor
of particular proper scoring rules (especially quadratic scoring rules), or proper scoring
rules, generally [but see Brier (1950), de Finetti (1974), Joyce (1998), Selten (1998),
Greaves and Wallace (2006), Leitgeb and Pettigrew (2010a), and Levinstein (2012)].
Nevertheless, one consideration that counts in favor of such accuracy measures is
worth mentioning, as illustrated by the following situation: imagine circumstances
where one is asked to report one’s personal probability for some proposition, α, upon

5 Easwaran (2013, p. 124) appeals to a similar condition in showing that updating by conditionalization
maximizes expected accuracy, including the case of probability functions that are defined over infinite sets
of possible worlds.
6 Note that the oracular policy, ν, will be principled in some population models, such as in population
models where � = {{x} : x ∈ U}. In all such cases, δ(x ∈ T) = ν(x ∈ T), for all x in U.
7 For the sake of uniformity, negatively oriented scoring rules (such as Brier scoring) are treated as loss
functions, where the scores corresponding to such loss functions are determined by multiplying the loss
earned according to such a rule by −1.
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the understanding that one will receive a payoff, measured in units of utility, according
to the accuracy of the report, as determined by some scoring rule, S. If S is proper,
then one will expect to do best by accurately reporting one’s personal probability for
α. On the other hand, if S is improper, then one will expect to do better by reporting a
value that differs from one’s personal probability, in at least some cases. Assume, in
the present case, that (1) one’s personal probability for α is r, (2) S is improper, and (3)
one expects to do better by reporting that one’s personal probability for α is s (s �= r).
Now since the ‘impropriety’ of improper scoring rules applies irrespective of whether
one’s personal probability is rational, assume that one’s degree of belief regarding α

is rational, given one’s evidence. In that case we have a curious situation which speaks
against treating S (an arbitrary improper scoring rule) as an accuracymeasure, namely:
PROB(α) = r is rational, but the expected accuracy of PROB(α) = s is greater than
the expected accuracy of PROB(α) = r.

Many notable proper scoring rules (e.g., quadratic and logarithmic scoring rules)
are sometimes called “strictly proper”. A scoring rule is strictly proper just in case
reporting one’s actual personal probabilities is unique in maximizing one’s expected
score, according to the measure, i.e.:

Definition S is a strictly proper scoring rule if and only if

∀r,s: if r �= s, then S(s, 1) × s + S(s, 0) × (1 − s) > S(r, 1) × s + S(r, 0) × (1 − s).

Since all strictly proper scoring rules are also proper scoring rules, any result that
holds for proper scoring rules holds for strictly proper scoring rules.

The first optimality result regarding δ is as follows (with a proof appearing in the
appendix):

Theorem 1 ∀ M,χ : if χ is principled in M, then ∀S:
(1) if S is a proper scoring rule, then ∀π ∈ �:

�x∈πS(δ(x ∈ T), ν(x ∈ T)) ≥ �x∈πS(χ(x ∈ T), ν(x ∈ T)), and

(2) if S is a strictly proper scoring rule and χ �= δ, then ∃π ∈ �:

�x∈πS(δ(x ∈ T), ν(x ∈ T)) > �x∈πS(χ(x ∈ T), ν(x ∈ T)).

Theorem 1 derives from the following fact: In situations where one must assign
the same credence, r, to propositions of the form x ∈ T, for each x in some
set R, one is guaranteed to maximize accuracy when r = freq(T|R), so long as
accuracy is measured by a proper scoring rule. The assignment r = freq(T|R) is
unique in maximizing accuracy, if accuracy is measured by a strictly proper scoring
rule.

Theorem1 establishes the optimality of reasoning by direct inference and preferring
more specific reference classes, within a restricted range of cases. Accepting such
limitations in applicability, it may still be objected that Theorem 1 only establishes
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that δ maximizes the sum of the scores earned for a set of personal probabilities,
and that some χ might be preferable to δ, in virtue of making judgments that are
more accurate in the cases which ‘count for more’, by making judgments that are
more accurate regarding propositions x ∈ T, concerning objects x that one is more
likely to encounter, for example. Although we can imagine the possibility of such
a χ , Theorem 1 shows (within the sort of population models to which it applies and
assuming the suitability of proper scoring rules) that there can be no sensible reason for
deviating from credences that conform to δ. Indeed, if χ is principled, then whatever
indicators χ employs as a basis for discerning which elements of the population
‘count for more’ are already reflected within �—recall that � corresponds to the set
of maximally specific descriptions within which we are able to assign the elements of
U. But Theorem 1 asserts that χ ’s aggregate score cannot exceed δ’s regarding any
element of �. So if one limits oneself to principled strategies, then in any situation
where one considered deviating from δ, regarding some category of propositions (those
ones regarded as counting for more, for example) one could apply Theorem 1, and see
that one would score at least as well, with respect to those propositions, by adopting
credences that conform to δ.

The applicability of Theorem 1 is limited to cases where it is possible to locate each
object within a reference class corresponding to a maximally specific description (as
represented by an element of�).We can generalize Theorem 1 to apply to cases where
it is not possible to locate each object within such a reference class, by considering
cases where the elements of U are presented under the guise of descriptions that do
not necessarily correspond to membership in an element of �, but rather merely to an
element of F (i.e., an element of {f : f = ∪A ∧ A ⊆ �}). In this case, I assume that
our policies have access to the relative frequency of T among each and every element
of F, where freq(T|f) = |{x : x ∈ f ∧ x ∈ T}|/|{x : x ∈ f}|, for all f in F.

In order to present the proposed generalization of Theorem 1, let population models
be defined as before. Now consider objects under descriptions, represented as pairs
〈x, f〉, where 〈x, f〉 functions as a name for x, and f is the most specific description that
x is known to satisfy under the name 〈x, f〉. It is assumed that all such descriptions are
accurate, and that an agent may be acquainted with the same object under different
names without realizing that the names refer to the same object (so that χ(〈x, fi 〉
∈ T) �= χ(〈x, f j 〉 ∈ T) may hold of a coherent credence function). Let UF be the
set of names with respect to a population model M, i.e., UF = {〈x, f〉 : x ∈ f ∧
f ∈ F}. A credence function, χ , regarding UF is then defined as a function from
UF into [0, 1], which (intuitively) represents degrees of belief regarding whether the
bearers of respective names, of the form ‘〈x, f〉’, are elements of T. By extension, I
permit terms and expressions such as: χ(〈x, f〉 ∈ T), and χ(〈x, f〉 ∈ T) = s, etc. The
following generalizes the notion of principledness, in order to apply in the present
context:

Definition A credence function, χ , is principled in M if and only if

∀f ∈ F : ∀x,y ∈ U : if x ∈ f and y ∈ f, then χ(〈x, f〉 ∈ T) = χ(〈y, f〉 ∈ T).
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The extension of δ in the present context is as follows: Relative to a respective popu-
lation model M, let δ(〈x, f〉 ∈ T) = freq(T|f), if x is in f. The optimality of the policy
represented by δ is expressed by the following theorem8:

Theorem 2 ∀M,χ : if χ is principled in M, then ∀S:
(1) if S is proper, then ∀f ∈ F:

�x∈fS(δ(〈x, f〉 ∈ T), ν(x ∈ T)) ≥ �x∈fS(χ(〈x, f〉 ∈ T), ν(x ∈ T)), and

(2) if S is strictly proper and χ �= δ, then ∃f ∈ F:

�x∈fS(δ(〈x, f〉 ∈ T), ν(x ∈ T)) > �x∈fS(χ(〈x, f〉 ∈ T), ν(x ∈ T)).

In addition to recommending a preference for direct inferences based on frequency
information for narrower reference classes, Theorems 1 and 2 are applicable to explain-
ing why one should prefer direct inferences that employ ‘standard’ reference classes
(where the object about which one would like to make a judgment is an element of the
reference class) over direct inferences where the reference class is a partition of the
standard reference class. This preference is relevant to correctly arbitrating between
competing direct inferences. For example, suppose that themembers of a certain group
are distributed among the categories small, medium, and large, and one would like to
form a judgment about the likelihood that a particular member of the group, called
“c”, is large. Suppose one’s information is limited, as follows: One knows that c is
a member of the group (but not whether c is small, medium, or large), and that the
ratio of small to medium to large members of the group is 1:8:1. In that case, it is
(apparently) correct to conclude that the probability that c is large is 0.1. Where the
sets of small, medium, and large members of the group are S, M, and L, the direct
inference that yields this conclusion may be expressed as follows: From c ∈ S∪M∪L
and freq(L|S∪M∪L) = 0.1 infer PROB(c∈L) = 0.1. On the other hand, someonemight
reason that one of three classifications is applicable to c (i.e., S, M, or L), and that the
applicability of each classification is equally likely. Where f (c) denotes the element
of {S, M, L} of which c is a member, we may attempt to underwrite the proposed
conclusion by appeal to the following (highly suspect) direct inference: From f (c)
∈ {S, M, L} and freq({L}|{S, M, L}) = 1/3 infer PROB( f (c) ∈ {L}) = 1/3 (which
entails that PROB(c ∈ L) = 1/3). Although the latter direct inference is suspect, its
reference class, {S, M, L}, is a partition rather than a superset of S∪M∪L. Never-
theless, accuracy considerations of the sort encapsulated by Theorems 1 and 2 may
be applied in explaining the preference for the former over the latter direct inference.
In particular, the policy of adopting a credence of 0.1 for propositions of the form x
∈ L, for each x in S∪M∪L, yields more accurate degrees of belief than adopting a
credence of 1/3 for propositions of the form x ∈ L, for each x in S∪M∪L. The point
illustrated by the present example is completely general: The aggregate accuracy of

8 The proof of Theorem 2 is identical to that of Theorem 1, where we replace instances of π and �, with
f and F, and instances of x, xi , and U, with 〈x, f〉, 〈xi , f〉, and UF, excluding instances of x and xi in the
scope of ν.
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credences formed by direct inference from point-valued frequency information for a
given reference class is guaranteed to be at least as great as the aggregate accuracy
of credences formed (in the described manner) by a partition of that reference class
(assuming proper scoring).9

It is not my intention to exaggerate the weight of Theorems 1 and 2 in providing a
justification for the policy of forming one’s personal probabilities via direct inference
with a preference for more specific reference classes. Many have argued for the cor-
rectness of one or another proper scoring rule (especially quadratic scoring rules), and
the results expressed by Theorems 1 and 2 hold for all such rules. That said, if one is
open to linear scoring, which has some prima facie plausibility, one may be unmoved
by Theorems 1 and 2. Moreover, Theorems 1 and 2 (while suggestive) only demon-
strate the optimality of direct inference with a preference for more specific reference
classes, in comparison to principled policies, in cases where an agent makes an infer-
ence about every object in the relevant domain (in the case of Theorem 1), or about
every object under every accurate description (in the case of Theorem 2).10 Finally,
the optimality results expressed by Theorems 1 and 2 are limited (while suggestive),
inasmuch as the theorems are only properly applicable in cases where one has access
to the (point-valued) frequency of T, for every element of � and F, respectively. In the
following section, I make some progress in addressing the preceding limitation of the
present results, by presenting analogous results that apply when one is able to make a
judgment about the expected frequency of T for every relevant reference class. I then
go on to show that we are often in a position to make point-valued expected frequency
judgments, in cases where we are not warranted in accepting a respective point-valued
frequency statement.

3 In the absence of precise-valued frequency information

In the preceding section, I offered reasons for forming one’s personal probabilities
via direct inference with a preference for more specific reference classes, in situations
where one has access to point-valued frequencies for all of the relevant reference
classes. Assuming that frequency information for a narrow reference class is preferred
over frequency information for a broad reference class, when the relevant frequency
statements are point-valued, a further dilemma arises when choosing whether to make
a direct inference based upon (i) point-valued frequency information for a broad
reference class, R, or upon (ii) non-point-valued frequency information for a narrower
reference class, R′ (R′ ⊂R). More generally, there is a dilemma concerning the choice
of direct inferences based upon (i) relatively precise-valued frequency information
for broad reference classes (i.e., cases where the value of a respective frequency is
known to reside within a relatively narrow interval), or upon (ii) relatively imprecise-
valued frequency information for narrower reference classes (i.e., cases where the

9 Note that I have not argued here that all direct inferences based on reference classes that are partitions are
degenerate. I only maintain that there is a preference for direct inferences that employ ‘standard’ reference
classes versus their partitions.
10 The results also imply the expected optimality of δ, in the case where an agent makes inferences about
uniformly randomly selected elements of the domain.
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narrowest interval within which the value of a respective frequency is known to reside
is relatively broad). The present dilemma is not inconsequential.When appliedwithout
qualification, the doctrine that one should always prefer direct inference based on
more specific reference classes yields the result that one should always prefer direct
inference based on the single element reference class consisting of the very object
about which one would like to draw a conclusion. But if one should always prefer
such single element reference classes, then it appears that direct inference can never
be used to draw an informative conclusion (cf. Kyburg 1974).

I will here present a new approach to the problem of choosing between direct infer-
ences based on (i) relatively precise-valued frequency information for broad reference
classes, versus (ii) relatively imprecise-valued frequency information for more spe-
cific reference classes.11 I address the problem by showing that it is usually possible
to use direct inference to make a (relatively) precise-valued frequency estimate for a
more specific reference class based on (relatively) precise-valued frequency informa-
tion for a respective broad reference class. Having made such a frequency estimate,
the dilemma of choosing between (i) and (ii) is removed, and one may proceed by
using the precise-valued frequency estimate for the more specific reference class as
a premise for direct inference. The proposed approach turns on some observations
concerning the combinatorial properties of sets, and on the thesis that the ‘proper’ sta-
tistical statements that may serve as major premises for direct inference are actually
statements of expected frequency.

I will proceed, in Sect. 3.1, by articulating and defending the claim that the proper
major premises for direct inference are statements of expected frequency. In Sects. 3.2
and 3.3, I propose two methods that often permit one to infer a (relatively) precise-
valued expected frequency for a more specific reference class, R′, based on (relatively)
precise-valued frequency information for a broad reference class, R (R′ ⊂ R). In
Sect. 3.4, I describe the respective roles of the two methods, and how they work
together. Finally, in Sect. 3.5, I argue that it is rational to adopt the expectations
generated by the proposed methods.

3.1 Expected frequencies as the basis for direct inference

The thesis that it is statements of expected frequency that are the proper statistical
premises for direct inference is found in (Bacchus 1990), and defended at some length
in (Thorn 2012). I here rehearse some of the considerations adduced in (Thorn 2012)
which are sufficient to lend plausibility to the thesis.

I begin by noting that expected frequencies are simply probability weighted aver-
ages of frequencies, relativized to a respective probability function. So the expected
frequency of T among R, written “E[freq(T|R)]”, relativized to a probability function,
PROB, is defined as follows:

E[freq(T|R)] = �r r × PROB(freq(T|R) = r).

11 For a survey of past approaches to the present problem, including those of Bacchus (1990), Pollock
(1990), and Kyburg and Teng (2001), see Thorn (2012).
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Notice that the use of known frequencies as premises for direct inference is a
special case of the use of expected frequencies, since if PROB(freq(T|R) = r) = 1, then
E[freq(T|R)] = r. More generally, if PROB(freq(T|R) ∈ S) = 1 and U is the smallest
interval such that S ⊆ U, then E[freq(T|R)] ∈ U (Thorn 2012). It is also of interest
to note that expected frequencies generalize single case probabilities, in the following
manner: PROB(c ∈ T) = PROB(freq(T|{c}) = 1) = E[freq(T|{c})].

A good reason for regarding statements of expected frequency as the proper statis-
tical premises for direct inference is connected with the assumption one makes when
one performs a direct inference. When making a direct inference, one assumes that the
object about which one is reasoning, c, is as likely to be a member of the respective
target class, T, as a uniformly randomly selected element of the proposed reference
class, R. Specifying the precise conditions under which it is reasonable to make this
assumption is an open problem.12 Regardless, if one does assume that c is as likely to
be in T as a random element of R (selected according to a uniform distribution), then
one is obliged to conclude that the probability that c is in T is equal to the frequency
of elements of T among R, in cases where one is aware of the value of this frequency.
Similarly, one is obliged to conclude that the probability that c is in T is equal to the
expected frequency of T among R, since the probability that a random element of
R is an element of T is identical to the expected frequency of T among R (provided
one makes the reasonable assumption that independence obtains between what value
freq(T|R) takes and which element of R is selected) (cf. Thorn 2012).

Given the preceding, I nowassume that properly formulated direct inferences satisfy
the following schemata:

From c ∈ R and E[freq(T|R)] = r infer that PROB(c ∈ T) = r.

From c ∈ R and E[freq(T|R)] ∈ S infer that PROB(c ∈ T) ∈ S.

Since PROB(freq(T|R) = r) = 1 implies E[freq(T|R)] = r, it is also acceptable to
formulate direct inferences using the schema introduced in Sect. 1.

It may be observed, at this point, that the results concerning the optimality of direct
inference based onmore specific reference classes (Theorems 1 and 2) are inapplicable
in the case where we base our direct inferences on expected frequencies. Nevertheless,
it is straightforward to generalize the two theorems, in order to demonstrate that
direct inference using expected frequencies for the most specific relevant reference
classes has the highest expected accuracy among the set of principled policies. These
generalizations of Theorems 1 and 2 provide further reasons in favor of the claim that
it is statements of expected frequency that are the proper statistical premises for direct
inference.

In order to carry out the generalization of Theorem 1, redefine δ, so that δ(x ∈ T) =
E[freq(T|π)], if x is in π . We then have the following result:

Theorem 3 ∀M,χ : if χ is principled in M, then ∀S:

12 I will touch on this problem briefly in Sect. 3.5, in connection with the classical principle of indifference.
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(1) if S is proper, then ∀π ∈ �:

E[�x∈πS(δ(x ∈ T), ν(x ∈ T))] ≥ E[�x∈πS(χ(x ∈ T), ν(x ∈ T))], and

(2) if S is strictly proper and χ �= δ, then ∃π ∈ �:

E[�x∈πS(δ(x ∈ T), ν(x ∈ T))] > E[�x∈πS(χ(x ∈ T), ν(x ∈ T))].

Theorem 3 is a straightforward consequence of Theorem 1: Theorem 1 tells us that
the described inequalities hold regardless of the value of freq(T|π ). Theorem 3 tells
us that the inequalities hold for any weighted average of the values of freq(T|π ).

In order to carry out the generalization of Theorem 2, redefine δ, so that δ(〈x, f〉 ∈
T) = E[freq(T|f)], if x is in f. In that case, we have the following result (which is a
straightforward consequence of Theorem 2):

Theorem 4 ∀M,χ : if χ is principled in M, then ∀S:
(1) if S is proper, then ∀f ∈ F:

E[�x∈fS(δ(〈x, f〉 ∈ T), ν(x ∈ T))] ≥ E[�x∈fS(χ(〈x, f〉 ∈ T), ν(x ∈ T))], and

(2) if S is strictly proper and χ �= δ, then ∃f∈F:

E[�x∈fS(δ(〈x, f〉 ∈ T), ν(x ∈ T))] > E[�x∈fS(χ(〈x, f〉 ∈ T), ν(x ∈ T))].

Theorems 3 and 4 demonstrate that the policy of forming one’s personal probabil-
ities by direct inference based on expected frequencies for the most specific relevant
reference classes yields personal probabilities whose expected accuracy is maximal,
among the field of principled competitors. So if one cares about the expected accuracy
of one’s personal probabilities, then it behooves one to form one’s personal proba-
bilities in the described manner. The urgency of the present injunction is, of course,
contingent upon the ‘correctness’ of the probabilities with which one’s expectations
are defined. In the present case, the relevant probabilities are fixed by one’s expected
frequencies for the relevant reference classes. So the force of the injunction to form
one’s personal probabilities by direct inference based on expected frequencies (for the
most specific relevant reference classes) is, in some sense, dependent on the correctness
of one’s expected frequencies.

Beyond considerations of ‘normative’ applicability, the formal applicability of The-
orems 3 and 4 is contingent upon forming point-valued expected frequency judgments
for all of the relevant reference classes. This marks an improvement over Theorems 1
and 2, whose applicability was contingent on having access to the actual frequencies
for all of the relevant reference classes. Despite this improvement (or extension of
applicability), it is still demanding to suppose that one is generally in a position to
make point-valued expected frequency judgments for all relevant reference classes,
especially if one’s concern is to make expected frequency judgments that are ratio-
nal, as measured by some appropriate normative standard. While I doubt that one is
always in a position to make a rational point-valued expected frequency judgment for
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every reference and target class, my aim in the following subsections is to outline
two methods that permit one to make point-valued expected frequency judgments in
a wide range of cases.

3.2 Inferring expected frequencies for more specific reference classes: method I

It is intended that the methods proposed in the present and following subsection be
applied in reasoning from information concerning the incidence ofT among a reference
class R to a conclusion concerning the value of E

[
freq

(
T|R′)], where R′ ⊂ R. In the

cases that interest us, our aim is to form a personal probability about the proposition
c ∈ T, for an object c, where c is a member of a reference class R′, R′ is a subset of
R, and we are not in a position to make a point-valued judgment concerning the value
of freq(T|R′). By assumption, the relative frequency of T among R is known. For the
moment, I also assume that for some numeric value z, we are warranted in accepting
|R| = z. I will explain, below, how to dispense with this assumption.

In applying the proposed method in order to form a judgment about the value of
E

[
freq

(
T|R′)], we proceed in two steps.

Step 1 Make a series of direct inferences to form conclusions of the form
PROB(freq(T|R′) = vi ) = pi , for each vi within the smallest set of numerically
expressed values in which freq(T|R′) is known to lie.

Step 2 Use the conclusions formed in Step 1 to infer the expectation of freq(T|R′),
according to the equation: E

[
freq

(
T|R′)] = �i vi × pi .

Executing the first step of the proposed method is somewhat complicated. Before
providing a general description of how to proceed in Step 1, I illustrate the proposed
method using the following simple example.

Suppose we are trying to assign a probability to the proposition that a member of
Company B, named “Bill”, is an NCO. Suppose we know that 25% of the 100 soldiers
in Company B are NCOs. However, suppose we also know that Bill is a member of the
command unit of Company B, which has 10 members, and we know that either 20%
or 30% of the members of the command unit are NCOs, and we do not know which.
(Suppose the percentage of NCOs in command units varies according to whether a
respective company is an artillery or infantry company, and we do not know whether
Company B is artillery or infantry.) The problem now is to draw a conclusion about
the expected frequency of NCOs among the command unit of Company B (which can
then be used to infer the probability that Bill is an NCO).

By assumption, the frequency of NCOs among the command unit of Company B
takes one of two possible values, namely, 0.2 or 0.3. So we could draw a conclusion
about the expected frequency of NCOs among the command unit, if we could draw
a conclusion about the probability that the frequency of NCOs among the command
unit of Company B is 0.2, and a conclusion about the probability that the frequency
of NCOs among the command unit of Company B is 0.3. As a basis for drawing
the needed conclusions, notice that the command unit of Company B is an element
of the reference class composed of the ten membered subsets of the set of soldiers
in Company B whose frequency of NCOs is either 0.2 or 0.3. Next notice that we
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are in a position to compute the values of the following frequencies concerning this
reference class: (1) the frequency of sets with a frequency of 0.2 NCOs among the ten
membered subsets of the set of soldiers in Company B whose frequency of NCOs is
either 0.2 or 0.3, and (2) the frequency of sets with a frequency of 0.3 NCOs among
the ten membered subsets of the set of soldiers in Company B whose frequency of
NCOs is either 0.2 or 0.3. Given that there are 100 soldiers in Company B, and 25 are
NCOs, the former frequency is identical to the number of ways of selecting 2 of the
25 NCOs along with 8 of the 75 non-NCOs divided by the sum of the number of ways
of selecting 2 of the 25 NCOs along with 8 of the non-NCOs and the number of ways
of selecting 3 of the 25 NCOs along with 7 of the non-NCOs. The former frequency
is, thus, (

(25
2

) × (75
8

)
) / (

(25
2

) × (75
8

) + (25
3

) × (75
7

)
) ≈ 0.515. The latter frequency

can also be computed via straightforward combinatorial methods. That frequency is
(
(25
3

) × (75
7

)
) / (

(25
2

) × (75
8

) + (25
3

) × (75
7

)
) ≈ 0.485.

Armed with the preceding frequency statements, we are in a position to (use direct
inference) to draw conclusions about the two probabilities that are required for com-
puting the expected frequency of NCOs among the command unit of Company B, as
follows:

1. The set of soldiers in the command unit of Company B is a ten membered subset
of the set of soldiers in Company B whose frequency of NCOs is either 0.2 or
0.3. Among the ten membered subsets of the set of soldiers in Company B whose
frequency of NCOs is either 0.2 or 0.3, about 51.5% have a frequency of 0.2
NCOs. So it is reasonable to infer (by direct inference) that the probability is
(about) 51.5% that the frequency of NCOs among the command unit of Company
B is 0.2.

2. The set of soldiers in the command unit of Company B is a ten membered subset
of the set of soldiers in Company B whose frequency of NCOs is either 0.2 or
0.3. Among the ten membered subsets of the set of soldiers in Company B whose
frequency of NCOs is either 0.2 or 0.3, about 48.5% have a frequency of 0.3
NCOs. So it is reasonable to infer (by direct inference) that the probability is
(about) 48.5% that the frequency of NCOs among the command unit of Company
B is 0.3.

The preceding two direct inferences license assignments of probability to the two
propositions concerning the possible frequencies of NCOs among the command unit
of Company B. Given these conclusions, we can compute the expected frequency of
NCOs among the command unit of Company B (Step 2), namely: The expected fre-
quency of NCOs among the command unit of Company B is 0.2 times the probability
that the frequency of NCOs among the command unit is 0.2 plus 0.3 times the prob-
ability that the frequency of NCOs among the command unit is 0.3. In accordance
with the two above direct inferences, the present sum is approximately 0.2×0.515 +
0.3×0.485 = 0.2485. The conclusion that the expected frequency of NCOs among the
command unit of Company B is (approximately) 0.2485 can now be used to draw a
conclusion regarding the probability that Bill is an NCO, namely: From the fact that
Bill is a member of the command unit of Company B and the fact that the expected
frequency of NCOs among the command unit is (approximately) 0.2485 infer that the
probability that Bill is an NCO is (approximately) 0.2485.
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The two step procedure that was used to infer the expected frequency of NCOs
among the command unit of Company B is completely general. The complicated part
of the procedure is Step 1, which (in the general case) involves drawing a conclusion
of the form PROB(freq(T|R′) = vi ) = pi , for each vi within the smallest set of
numerically expressed values in which freq(T|R′) is known to lie. In the case of the
commandunit ofCompanyB, the smallest set of values inwhich freq(T|R′)was known
to lie was {0.2, 0.3}. In the general case, the set of possible values of freq(T|R′) may
be larger. As in the case of Company B, we will have to make a direct inference
concerning the value of PROB(freq(T|R′) = vi ), for each such vi . In order to comply
with considerations of specificity, the reference class for the direct inferences will
be {S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}, where W and V are the smallest
sets of numerically expressed values in which |R′| and freq(T|R′), respectively, are
known to lie. As with the two direct inferences used in the case of the command
unit of Company B, the direct inferences, in the general case, take the following
form:

From R′ ∈ {S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}and
freq({S : freq(T|S) = vi }|{S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}) = pi
infer that PROB(R′ ∈ {S : freq(T|S) = vi }) = pi
(i.e., infer that PROB(freq(T|R′) = vi ) = pi ).

As in the case of Company B, we are in a position to make the described direct
inferences, since R′ is an element of the respective reference class, and since we are in
a position to compute the value of pi , for each major premise, by appeal to elementary
combinatorial principles. The following theorem outlines a means of computing the
value of pi , given vi , freq(T|R), and |R|:
Theorem 5 ∀T,R,W,V,vi : freq({S : freq(T|S) = vi }|{S : S ⊆ R ∧ |S| ∈ W ∧
freq(T|S) ∈ V})
= �w∈W

(|R|×freq(T|R)
w×vi

) × (|R|×(1−freq(T|R))
w×(1−vi )

)
/

�w∈W,v∈V
(|R|×freq(T|R)

w×v

) × (|R|×(1−freq(T|R))
w×(1−v)

)
.13

The describedmethod permits inference to a numeric point-valued conclusion about
the value of E

[
freq(T|R′)

]
, in cases where one is warranted in accepting |R| = z,

for some numeric value z. When the latter condition is not met, we may apply a
variation of the proposed method, so long as there is a smallest finite set of (finite)
numeric values, Z, such that we are warranted in accepting that |R| is in Z. In such
situations, we reason by cases. Figure 1 illustrates how such reasoning would proceed
in the case of the command unit of Company B, in a situation where we did not know
the number of soldiers in Company B, and knew only that there was either 100 or
120 soldiers. In that case, we would apply two instances of Method I: one according
to the assumption that there is 100 soldiers in Company B, and another according
to the assumption that there is 120. We would then accept the disjunction of the two

13 Both of the mentioned values are identical to: |{S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) = vi }|/|{S : S ⊆ R ∧
|S| ∈ W ∧ freq(T|S) ∈ V}|.
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Imprecise Info
about |R|

Hypothetical
Assumptions

Embedded
Applications
of Method I

Hypothetical
Conclusions

Imprecise
Conclusion

Company B has 100 or 120 elements

Step 1

Step 2

⇓
Company B has
100 elements

⇓

⇓
The expected freq of NCOs
in the cmd unit is 0.2485

⇓

Step 1

Step 2

⇓
Company B has
120 elements

⇓

⇓
The expected freq of NCOs
in the cmd unit is 0.2453

⇓
The expected freq of NCOs in the cmd unit is 0.2485 or 0.2453

Fig. 1 Inference by cases with embedded applications of Method I

(hypothetical) conclusions. Fortunately, the size of |R| has only a limited bearing upon
the value of E

[
freq(T|R′)

]
as determined by the basic form of the proposed method.

As a consequence, our inability to make a precise-valued judgment about the value
of |R| will not prevent us from making a relatively precise judgment about the value
of E

[
freq(T|R′)

]
. For example, if we hold all other features of the example of Bill

of Company B fixed, but suppose that the size of Company B may take any value
within the sequence of values ranging from 20 to 2,000,000,000, then we may reason
by cases in order to infer that the expected frequency of NCOs among the command
unit of Company B lies within the interval [0.231, 0.262].

Before proceeding, note that the just described case-based application of the pro-
posed method is very general. In addition to applying in the case where we are not
warranted in making a point-valued judgment about the value of |R|, we may reason in
a similar manner when we are not warranted in making a point-valued judgment about
the value of freq(T|R). Further, in the absence of point-valued information concerning
the value of both |R| and freq(T|R), we may proceed by treating the combinations
of possible values of |R| and freq(T|R) as hypothetical assumptions for a case-based
application of the proposed method. Evidently, it would also be reasonable to apply a
variant of such case-based inference, in situations where we are in a position to assign
probabilities to the respective cases. In such situations, our judgment concerning the
value of E[freq(T|R′)]would be determined by taking a weighted average of the hypo-
thetical conclusions reached within the respective cases, where the respective weights
are the probabilities assigned to the corresponding hypothetical assumptions.

Proper (non-case-based) applications ofMethod I permit inference to a point-valued
conclusion concerning the value of a respective expected frequency, E

[
freq(T|R′)

]
,

thereby extending the applicability of the optimality results presented in the preceding
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subsection. Beyond this, case-based applications of Method I are of general interest,
since they are applicable to removing the dilemma of choosing between direct infer-
ences based upon precise-valued frequency information for broad reference classes,
and direct inferences based upon imprecise-valued frequency information for more
specific reference classes.

3.3 Inferring expected frequencies for more specific reference classes: method II

The method proposed in the present subsection represents a streamlined variant of
the method of the preceding subsection. The limitation of the streamlined vari-
ant is that it is only applicable in cases where one is not warranted in accepting
that freq(T|R′) ∈ v, for any set of numerically expressed values, v, such that v ⊂
{0/|R′|, 1/|R′|, · · · , |R′|/|R′|}. In such cases, the method permits one to infer that
E

[
freq(T|R′)

] = freq(T|R). For example, in a situation where we had no information
about the frequency of NCOs in the command unit of Company B, we could use the
method to infer that the expected frequency of NCOs in the command unit of Company
B is identical to the frequency of NCOs in Company B.

As with method I, method II follows a two step procedure in inferring the expec-
tation of freq(T|R′). In Step 1, we make a series of direct inferences, in order
to draw a conclusion of the form PROB(freq(T|R′) = vi ) = pi , for each vi in
{0/|R′|, 1/|R′|, · · · , |R′|/|R′|}. In Step 2, we use the conclusions formed in the first
step in order to infer the expectation of freq(T|R′). The main difference between the
two methods is in the reference class used in the first step. In the case of method II,
the reference class simply consists in the set of subsets of R whose size is identical
to the size of R′. For example, in a situation where we had no information about the
frequency of NCOs in the command unit of Company B, the reference class used in
the first step would be: the subsets of the members of Company B, whose size was
identical to the size of the command unit of Company B. Using this reference class, we
would make one direct inference for each of the eleven possible frequencies of NCOs
among the command unit of Company B (i.e., 0.0, 0.1. 0.2, …, 0.9, 1.0), as follows:

1. The set of soldiers in the command unit of Company B is a subset of the set of
soldiers in CompanyBwhose size is identical to the size of the set of soldiers in the
command unit of Company B. About 4.8% of the sets among this reference class
have a frequency of 0.0 NCOs. So it is reasonable to infer (by direct inference) that
the probability is (about) 4.8% that the frequency of NCOs among the command
unit of Company B is 0.0.

2. The set of soldiers in the command unit of Company B is a subset of the set of
soldiers in CompanyBwhose size is identical to the size of the set of soldiers in the
command unit of Company B. About 18.1% of the sets among this reference class
have a frequency of 0.1 NCOs. So it is reasonable to infer (by direct inference) that
the probability is (about) 18.1% that the frequency of NCOs among the command
unit of Company B is 0.1.

Etc.

Written formally, the preceding direct inferences are instances of the following
schema:
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From R′ ∈ {S : S ⊆ R ∧ |S| = |R′|} and
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}) = pi
infer that PROB(R′ ∈ {S : freq(T|S) = i/|R′|}) = pi
(i.e., infer that PROB(freq(T|R′) = i/|R′|) = pi ).

As I already mentioned, method II always yields the result that E[freq(T|R′)] =
freq(T|R). To see why this is so, notice that the content of the conclusions of the direct
inferences made in the first step may be re-written as follows:

PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).
Given the set of such conclusions, the antecedent of the following theorem is sat-

isfied, thereby permitting us to infer that E[freq(T|R′)] = freq(T|R):

Theorem 6 ∀T,R,R′: if R′ ⊆ R and ∀i : PROB(freq(T|R′) = i /|R′|) = freq({S :
freq(T|S) = i /|R′|}|{S : S ⊆ R ∧ |S| = |R′|}), then E[freq(T|R′)] = freq(T|R).

Theorem 6 is based on the fact that, for any sets T and R, the average value of the
frequency of T among subsets of R of any given size is identical to the frequency of T
among R. For example, if (as in the case of Company B) the size of R is 100, and 25
elements of R are elements of T (i.e., freq(T|R) = 0.25), then the average number of
elements of T among 10 element subsets of R will be 2.5 (and the average frequency
of T among such sets will be 0.25). Now notice that such an average is, obviously,
identical to the average of the possible frequency values for such subsets, weighted
according to the number of subsets having the respective frequency value. So, in the
case of Company B, the average of the (eleven) possible values of the frequency of
T among the 10 element subsets of R, weighted according to the number of subsets
having the respective frequency, is 0.25. Theorem 6 weds the preceding observation
to the fact that expectations are (probability) weighted averages, and provides a means
of inferring the expected frequency of T among R′, when R′ is a subset of R. In
particular, Theorem 6 tells us that if, for each value i/|R′|, we identify the probability
that freq(T|R′) takes that value with the frequency with which subsets of R (of size
|R′|) take that value as their frequency of T, then E[freq(T|R′)] will be identical to
freq(T|R). The latter identity holds, since the average value of the frequency of T
among the subsets of R of size |R′| (or of any size), weighted according to the number
of subsets having the respective frequency, is freq(T|R).14

In applyingMethod II to infer the expected frequency ofNCOs among the command
unit of Company B, it was assumed that we knew the sizes of R and R′, i.e., the size
of Company B and the size of the command unit of Company B. A key advantage of
Method II is its applicability even when we lack such knowledge. In such cases, we
may treat the respective pi , that appear in the major premises and conclusions of the
direct inferences of Step 1, as constants that are introduced according to the following
definition:

pi = freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).

14 A proof of Theorem 6 is given in the appendix.
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In that case, the major premises of the direct inferences made in Step 1 are analytic,
and the conclusions of the direct inferences may be re-written (once again) as follows:

PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).
Given the set of such conclusions, we are in a position to apply Theorem 6, in order

to infer that E[freq(T|R′)] = freq(T|R).15

In cases where we are in a position to see, in advance, that it is possible to use the
proposed method, it is practical to reason in accordance with the following defeasible
inference schema:

From R′ ⊆ R and freq(T|R) = r infer that E[freq(T|R′)] = r.

The present method is, thus, of theoretical interest, since in the case where R′ = {c},
it recapitulates the inference schema introduced in Sect. 1, which is equivalent to:

From {c} ⊆ R and freq(T|R) = r infer E[freq(T|{c})] = r.16

Now note that the present method for inferring the value of E[freq(T|R′)] general-
izes to the case where our inferences are based on a judgment concerning the value
of E[freq(T|R)], rather than the value of freq(T|R). In this case, it is possible to infer
that E

[
freq(T|R′)

] = E
[
freq(T|R)

]
. Our inference to the value of E

[
freq(T|R′)

]
, in

such cases, proceeds by direct inferences of the following form:

From R′ ∈ {S : S ⊆ R ∧ |S| = |R′|} and
E[freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S|] = |R′|}) = pi infer that
PROB(freq(T|R′) = i/|R′|) = pi .

The value of E
[
freq(T|R′)

]
then follows by the following theorem:

Theorem 7 ∀T,R,R′: if R′ ⊆ R and ∀i : PROB(freq(T|R′) = i /|R′|) = E[freq({S :
freq(T|S) = i /|R′|}|{S : S ⊆ R ∧ |S| = |R′|})], then E[freq(T|R′)] = E[freq(T|R)].

Theorem 7 is a straightforward consequence of Theorem 6: Theorem 6 tells us that
the identity expressed in its consequent holds regardless of the value of freq(T|R),
given an assignment of probabilities according to the frequencies mentioned in its
antecedent. Theorem 7 tells us that a corresponding identity holds for any weighted
average of the values of freq(T|R), given an assignment of probabilities according to
a corresponding weighted average of the frequencies mentioned in the antecedent of
Theorem 6.

It is noteworthy that Theorem 7, in conjunction with its intended application, illus-
trate howonemayderive [using terms introducedbyPollock 1990]non-classical direct
inference from classical direct inference, as represented by the following defeasible
inference schema:

15 In cases where the size of |R′| is unknown, let s+ be the least upper bound that one is warranted in
accepting regarding the size of |R′|. In Step 1, we then make one direct inference for each value of i in
{0, ..., s+}.
16 Recall that PROB(c ∈ T) = E

[
freq(T|{c})].
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From R′ ⊆ R and E[freq(T|R)] = r infer that E[freq(T|R′)] = r.

So the present method yields a picture of direct inference that stands in contrast to
the accounts of direct inference articulated by Pollock (1990) and Bacchus (1990),
which propose to derive classical direct inference from non-classical direct inference.
Furthermore, the present method allows us to uphold the doctrine that E[freq(T|R)] =
E[freq(T|R′)] = E[freq(T|{c})] = r, for all non-gerrymandered R′, such that {c} ⊆
R′ ⊆ R, in cases where it is appropriate to use direct inference to infer that PROB(c ∈
T) = r, based on frequency information for the reference class R.17

A worry regardingMethod II concerns the peculiar use of constants, in cases where
the sizes of R and R′ are unknown. In order to dispel this concern, I will now show that
the use of such constants is not essential to reaching the conclusions licensed by the
proposed method. Indeed, it is possible to infer those conclusions using case-based
inference of the sort introduced in the preceding subsection. I adapt an example of
Bradley and Steele (2014) in order to illustrate how such inferences proceed.18

According to the example of Bradley and Steele (2014), we know that there are
10 black marbles and 10 white marbles, which are divided between two urns, with
each urn containing 10 marbles. Our task in Bradley and Steele’s original example is
to judge the probability that a given ball drawn from the ‘first urn’ (an urn selected
at random) is white. In order to generate additional uncertainty, I here consider a
variant of the example that introduces uncertainty both concerning the total number
of marbles, and the number of marbles in the first urn: Rather than know that there
are 10 black marbles and 10 white marbles, assume we know that there is either (case
1) 10 black marbles and 10 white marbles, or (case 2) 20 black marbles and 20 white
marbles. Next, supposewe know that one of the urns containsmore balls than the other.
In particular, suppose we know that the first urn contains 40% of the balls (subcase A),
or that the first urn contains 60% of the balls (subcase B). In this situation, we can infer
the expected frequency of white balls among the first urn using case-based reasoning
of the sort introduced at the end of subsection 3.3, where hypothetical conclusions are
determined by applying Method II, rather than Method I. There are four cases (1A,
1B, 2A, and 2B). Where M is the set of marbles in the two urns, U the set of marbles
in the first urn, and W the set of white marbles, our objective is to compute the value
of E[freq(W|U)], within each case. We proceed, according to the assumed values of
|M| and |U|, as given by the relevant case, by conducting a direct inference of the
following form, for each of the possible values of i (i ∈ {0, ..., |U|}):

From U ∈ {S : S ⊆ R ∧ |S| = |U|} and
freq({S : freq(W|S) = i/|U|}|{S : S ⊆ R ∧ |S| = |U|}) = pi
infer that PROB(freq(W|U) = i/|U|) = pi .

17 The restriction in the applicability of theorem 7 to cases where one is not warranted in accepting that
freq(T|R′) ∈ v, for any v, such that v⊂ {0/|R′|, 1/|R′|, ..., |R′|/|R′|} is also suggestive of where past accounts
of direct inference (with the possible exception of Thorn 2012) go wrong in the face of Stone’s Ace Urn
example (Stone 1987, p. 251)
18 The example of Bradley and Steele (2014) is meant to serve as a plausible example of credence dilation.
If the present treatment of the example is correct, it cannot serve as an example of rational credence dilation.
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For each such direct inference, it is possible to directly compute the value of the
respective pi , as follows:

freq({S : freq(W|S) = i/|U|}|{S : S ⊆ M ∧ |S| = |U|})
=

(|M| × freq(W|M)

i

)
×

(|M| × (1 − freq(W|M))

|U| − i

)/

�k∈{0,...,|U|}
(|M| × freq(W|M)

k

)
×

(|M| × (1 − freq(W|M))

|U| − k

)
.

Since instances of the preceding equation contain no numeric constants whose val-
ues are unknown within the respective cases, it is possible to directly calculate the
value of pi , for each possible value of i , within each case. Before embarking on such
a cumbersome calculation, Theorem 6 informs us of the result of concluding that
PROB(freq(W|U) = i /|U|) = freq({S : freq(W|S) = i /|U|}|{S : S ⊆ M ∧ |S| = |U|}),
for all i ∈ {0, ..., |U|}, namely: E[freq(W|U)] = freq(W|M) = 0.5. Since the preceding
identities hold in every case, it is correct to conclude that E[freq(W|U)] = 0.5.

The treatment of the preceding example provides an illustration of how we could
have reached the conclusions outlined by Method II by directly computing the values
for the major premises that underpin the method, despite being unable to make a
precise-valued judgment about the sizes of R and R′.

As with method I, applications of method II permit inference to a point-valued
conclusion concerning the value of a respective expected frequency, thereby extending
the applicability of the optimality results presented in Sect. 3.1. Similar to Method I,
applications of Method II may also be embedded within case-based inferences of the
sort described at the end of Sect. 3.2. Such embeddings permit inference according to
the following schemata:

From R′ ⊆ R and freq(T|R) ∈ S infer that E[freq(T|R′)] ∈ S.

From R′ ⊆ R and E[freq(T|R)] ∈ S infer that E[freq(T|R′)] ∈ S.

Such case-based applications of Method II are of general interest, since they are
applicable to removing the dilemma of choosing between direct inferences based upon
precise-valued frequency information for broad reference classes, and direct infer-
ences based upon imprecise-valued frequency information for more specific reference
classes.

3.4 Combining the two methods

It is intended that the methods of the preceding subsections have their own ‘spheres of
influence’. Before outlining the respective spheres (and the manner in which the two
methods combine), it is helpful to observe the manner in which a variant of Method
I may be used in order to form a judgment about the value of E[freq(T|R′)], given
frequency information concerning two nested reference classes R1 and R2, where
R′ ⊂ R1 ⊂ R2. In such cases, one would first make a series of direct inferences (of
exactly the sort one makes in Step 1 of typical applications of Method I), in order to
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form an assignment of probabilities to the possible values of freq(T|R1) (given one’s
frequency information for R2). One would, then, apply a case-based variant ofMethod
I, where each case yields a hypothetical conclusion about the value of E[freq(T|R′)],
given a particular assumption about the value of freq(T|R1). One’s final conclusion
concerning the value of E[freq(T|R′)] is then determined by weighting one’s hypo-
thetical conclusions about the value of E[freq(T|R′)], according to the probabilities
previously assigned to the assumed values of freq(T|R1). Similar applications of
Method Imay also be used in order to forma judgment about the value ofE[freq(T|R′)],
given frequency information concerning three, or more, nested reference classes.

There are, in fact, many possible variants ofMethod I that one may apply according
to the particularities of one’s available information (where reference class selection
is driven by considerations of specificity). Indeed, as a step to forming a conclusion
about a proposition, c ∈ T, by direct inference, Method I should be regarded as an
instance of a general strategy for inferring the value of E[freq(T|R′)], where R′ is
the narrowest (non-gerrymandered) reference class containing c for which we have
genuine frequency information (i.e., the narrowest reference class about which one is
warranted in accepting freq(T|R′) ∈ v, for some set of numerically expressed values,
such that v ⊂ {0/|R′|, 1/|R′|, ..., |R′|/|R′|}). Having used Method I (or variants) to
infer the value of E[freq(T|R′)], for the narrowest (non-gerrymandered) reference
class, R′, for which we have genuine frequency information, it is time for Method II to
take over. Given the value of E[freq(T|R′)] (or a set of values), Method II may be used
to infer the value of E[freq(T| R*)] (or a set of values), for all non-gerrymandered R*,
such that {c} ⊆ R* ⊆ R′.

3.5 Are the resulting expectations rational?

In proposing the applicability of themethods of the preceding subsections, my guiding
assumptionswere: (1) that non-degenerate direct inferences provide defeasible reasons
for accepting their conclusions, and (2) that one should prefer non-degenerate direct
inferences based on more specific reference classes (and, similarly, non-degenerate
direct inferences based on ‘standard’ reference classes versus their partitions), in the
case where non-degenerate direct inferences yield conflicting conclusions. Notice that
the applicability of (1) and (2) is limited to non-degenerate direct inferences. There
are, I think, two sorts of degenerate direct inferences. I briefly discuss each sort, in turn.

One sort of degenerate direct inference involves gerrymandered reference or target
classes. I am reasonably confident that it is possible to give formal criteria for identi-
fying such direct inferences, but I will not attempt that task here (but see (Thorn 2012)
which purports to provide such criteria). As an alternative, I describe two paradigmatic
examples. The first type of example involves a reference class, R, that is formed by
taking the union of two sets R1 and R2, where (i) R1 is much larger than R2, (ii) the
frequency of members of the relevant target class, T, among R1 is known to be very
high (or low), (iii) R2 is known to contain the object, c, about which we wish to form
a judgment, and (iv) we are only warranted in making an imprecise-valued judgment
about the frequency of members of T among R2. For example, in the case of Bob of
Company B, consider the reference class formed by the union of the set of NCOs in
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Company B, and the unit set containing Bob. The frequency of NCOs among this set
is in {25/26, 25/25}. As with other reference classes that could be generated in accor-
dance with the preceding recipe, it is clear that the described reference class should
not be used in drawing a conclusion about the probability that Bob is an NCO. Similar
problems can be generated by forming target classes by disjunction. For example, sup-
pose we know that more than 90% of Mondays are workdays. This implies that more
than 90% of Mondays are either workdays or Aristotle’s birthday. Now suppose that
we know that next Monday is a holiday. In that case, it would be inappropriate to use
the latter frequency statement to infer that next Monday is very probably a workday
or Aristotle’s birthday, and thus very probably Aristotle’s birthday.

Another sort of degenerate direct inference involves the use of a reference class
consisting of a partition of the set of all possible worlds. Such direct inferences cor-
respond to applications of the traditional principle of indifference (cf. White 2009,
pp. 169–171). These direct inferences are rightly regarded as problematic since they
inherit the defect characteristic of the traditional principle of indifference, namely: It is
always possible to re-partition the set of possible worlds in order to form new reference
classes, for new direct inferences, that yield conclusions that conflict with the ones
licensed by the original partition, and there is no analogue of specificity conditions
that can serve as a principled means of arbitrating between such direct inferences.
Due to their unprincipled nature, it is sensible to suppose that direct inferences whose
reference class consists of a partition of the set of possible worlds (or a partition of a
similar infinite set) are degenerate. More precisely, I propose that we regard a direct
inference as degenerate if it is formulated using a reference class that is a partition
of an infinite set. Regarding this proposal, it should be acknowledged that it is often
possible to ‘emulate’ a regular direct inference, whose reference class is not a partition
of an infinite set (or even a partition of a set), by a series of direct inferences whose
reference class consists of a set of mutually exclusive and jointly inclusive proposi-
tions (i.e., a partition of the set of all possible worlds).19 However, there is no reason
to regard the emulatability of a regular direct inference by direct inferences whose
reference class is a partition of an infinite set as impugning the regular direct infer-
ence. Beyond this, it is apparent that the proposed degeneracy condition prohibits those
direct inferences that it was intended to prohibit (i.e., those direct inferences that would
be sufficient to emulate unprincipled applications of the traditional principle of indif-
ference), while not accosting regular direct inferences. So it appears that the proposed
degeneracy condition provides an adequate means of disentangling a sensible frag-
ment of direct inference from unprincipled applications of the traditional principle of
indifference.20

19 Consider a regular direct inference of the form: From c ∈ R and freq(T|R) = r infer that PROB(c ∈ T)

= r, where r = i/|R|. To achieve such an emulation of this direct inference, proceed as follows: (i) Introduce
a set of names {c1, ..., ci, ci+1, ..., c|R|} for the elements of R, where c1 through ci denote elements of T,
and ci+1 through c|R| do not. (ii) Form the reference class Rπ = {c=c1, ..., c=c|R|}. (iii) Where V is the set
of all true propositions, make direct inferences of the form: From c=cj ∈ Rπ and freq(V|Rπ ) = 1/|R| infer
that PROB(c=cj ∈ V) = 1/|R|, for each j in {1, ..., i}. (iv) Given the conclusions of the direct inferences
made in step (iii), deduce that PROB(c ∈ T) = i/|R|.
20 The present issue obviously deserves are more detailed and careful treatment than is given here. For
reasons of space, I leave this task to another occasion.
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It is relatively clear that the direct inferences underlying the proposed methods are
not degenerate. Neither their reference nor target classes are gerrymandered, nor do
their reference classes consist of partitions of an infinite set. This is not to say that the
direct inferences underlying the proposedmethods are not subject to defeat. Indeed, (2)
acknowledges one sort of case where non-degenerate direct inferences are subject to
defeat, and there are surely others. For example, I assume, as is usually assumed, that
non-degenerate direct inferences to conflicting conclusions are mutually defeating,
in cases where specificity considerations are not applicable in yielding a preference
for one or the other of the two direct inferences. Nevertheless, (1) generates a pre-
sumption in favor of the direct inferences underlying the proposed methods: If there
is no reason to think that these direct inferences are defeated, then they are not. One
could, of course, object to (1) and (2). I will not take that objection too seriously. I
have already provided some reason to accept the two theses, by appeal to optimality
results. To the extent that those results are suggestive of the virtues of forming our
personal probabilities by direct inference with a preference for narrower reference
classes, they provide support for the application of the two proposed methods for
inferring expected frequencies, in cases where the direct inferences underlying the
methods employ the narrowest relevant reference class. As an alternative, we can fall
back to the commonly held ‘raw’ intuition that something very like (1) and (2) must
be correct.

Given (1) and (2), the proposed methods do not generally yield undefeated rea-
sons for accepting respective expected frequencies. Indeed, since the methods are
based on direct inferences, and direct inferences based on more specific reference
classes are to be preferred, the direct inferences underlying the proposed methods
will be defeated in some cases. A more significant worry is that the outputs of the
proposed methods are always (or nearly always) defeated. This would be the case if
there were ‘worthy’ competing methods that normally generated different expected
frequencies. For the reasons that follow, I am optimistic that there are no such meth-
ods.

There are plenty of methods/algorithms that one could employ in order to ‘assign’
a value to a respective expected frequency. But typical methods for assigning values
do not yield reasons for accepting the respective value assignments. In other words,
genuine competitors for the proposed methods would be backed by inference meth-
ods that confer reasons for accepting their conclusions. The set of possible genuine
competitor methods can be divided into two classes: (i) ones that depend wholly on
instances of direct inference (along with deduction), and (ii) ones that do not. It is
plausible to think that there are ‘part time’ competitors of the latter sort, which apply
in some cases. For example, it is plausible that one could form a judgment about the
value of E[freq(T|R′)], for respective T and R′, based on (some form of) enumerative
induction from an observed sample, in some cases. However, one is not normally in a
position to form such judgments. Beyond this, it is fair to say that there are no known
inference methods, excluding ones grounded in direct inference, that generally (or
nearly always) provide reasons for accepting such expected frequencies. The partition
dependent methods proposed by objective Bayesians represent a possible exception
to the preceding claim. But these methods are generally, and rightly, regarded with
skepticism. For this reason, I assume that such methods do not provide reasons for
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accepting their outputs (at least not in cases where one is in a position to make a com-
peting judgment based on empirical data). In any case, given the problem of partition
selection involved in applying such methods, we ought to explore alternatives, such
as the methods proposed here.

It is clear that it is possible to formulatemethods that are grounded in direct inference
that are competitors to the methods proposed here. It appears that all such competitor
methods fall into one of three categories. First, there are competitor methods that
depend on direct inferences based on broader reference classes (or on reference classes
that consist of partitions of the reference classes upon which the proposed methods
are based—recall the discussion of such cases that immediately followed Theorem 2).
For this reason, the direct inferences underlying the methods proposed in the present
paper should be preferred. Second, it is possible to formulate alternatives that employ
gerrymandered reference classes. These direct inferences, unlike the ones proposed
here, are degenerate. Third, there are direct inferences whose reference class consists
of a partition of the set of possible worlds. Such direct inferences, unlike the ones
proposed here, are also degenerate.

The preceding considerations count in favor of the wide spread (though not univer-
sal) applicability of the proposed methods. That said, the adduced considerations are
not conclusive, since they fall short of demonstrating the non-existence of a genuine
competitor that normally generates reasons for accepting different expected frequen-
cies.

4 Conclusion

In the present article, I offered reasons in favor of the policy of forming personal
probabilities by direct inference using the most specific applicable reference classes.
The main considerations in favor of the policy were presented in Sect. 2, where it
was shown that, among the set of principled policies that could be used in setting
one’s personal probabilities, the policy of reasoning by direct inference using the
most specific applicable reference classes yields personal probabilitieswhose accuracy
is optimal, according to all proper scoring rules, in all situations where all of the
applicable frequency information is point-valued. In Sect. 3, methods were introduced
that often permit one to infer point-valued expected frequencies for subsets of sets for
which one has point-valued frequency information. These methods go some distance
in extending the applicability of the kind of optimality results presented in Sect. 2. The
methods of Sect. 3 also apply to the dilemma of choosing between direct inference
based on relatively precise-valued frequency information for broad reference classes,
and direct inference based on relatively imprecise-valued frequency information for
more specific reference classes.
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Appendix

Theorem 1 ∀M,χ : if χ is principled in M, then ∀S:
(1) if S is a proper scoring rule, then ∀π ∈ �:

�x∈πS(δ(x ∈ T), ν(x ∈ T)) ≥ �x∈πS(χ(x ∈ T), ν(x ∈ T)), and

(2) if S is a strictly proper scoring rule and χ �= δ, then ∃π ∈ �:

�x∈πS(δ(x ∈ T), ν(x ∈ T)) > �x∈πS(χ(x ∈ T), ν(x ∈ T)).

Proof Part (1): Consider an arbitrary π in �, and an arbitrary xi in π . We have
�x∈πS(δ(x ∈ T), ν(x ∈ T)) = |π | × [S(δ(xi ∈ T), 1) × δ(xi ∈ T) + S(δ(xi ∈
T), 0)× (1−δ(xi ∈ T)], and�x∈πS(χ(x ∈ T), ν(x ∈ T)) = |π |×[S(χ(xi ∈ T), 1)×
δ(xi ∈ T) + S(χ(xi ∈ T), 0) × (1 − δ(xi ∈ T)] (since δ and χ are principled). Since
S is proper, we have for all x : S(δ(x ∈ T), 1) × δ(x ∈ T) + S(δ(x ∈ T), 0)(1− δ(x ∈
T)) ≥ S(χ(x ∈ T), 1) × δ(x ∈ T) + S(χ(x ∈ T), 0)(1 − δ(x ∈ T)). ��

Part (2): For some π , we have δ(x ∈ T) �= χ(x ∈ T), for all x in π (since δ and χ

are principled and δ �= χ ). Consider such a π . For such a π,S(δ(x ∈ T), 1) × δ(x ∈
T) + S(δ(x ∈ T), 0) × (1 − δ(x ∈ T)) > S(χ(x ∈ T), 1) × δ(x ∈ T) + S(χ(x ∈
T), 0) × (1 − δ(x ∈ T)), for all x in π , since S is strictly proper. ��
Theorem 6 ∀T,R,R′: if R′ ⊆ R and ∀i : PROB(freq(T|R′) = i /|R′|) = freq({S :
freq(T|S) = i /|R′|}|{S : S ⊆ R ∧ |S| = |R′|}), then E[freq(T|R′)] = freq(T|R).
Proof Let T, R, and R′ be arbitrary sets such that R′ ⊆ R. Note that, for all
i, freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}) = (g

i

) × (|R|−g
|R′|−i

)
/
( |R|
|R′|

)
,

where g = freq(T|R) × |R|. So, for all i , PROB(freq(T|R′) = i/|R′|) =(g
i

) × (|R|−g
|R′|−i

)
/
( |R|
|R′|

)
. So E[freq(T|R′)] = �i∈{0,...,|R′|} i /|R′| × PROB(freq(T|R′) =

i/|R′|) = �i∈{0,...,|R′|} i /|R′| × (g
i

) × (|R|−g
|R′|−i

)
/
( |R|
|R′|

) = 1/|R′| × 1/
( |R|
|R′|

) ×
�i∈{0,...,|R′|}

(g
i

) × (|R|−g
|R′|−i

) × (i
1

) = 1/|R′| × 1/
( |R|
|R′|

) × (g
1

) × (g+|R|−g−1
|R′|−1

)
[by Van-

dermonde’s Identity (cf. Gould (2010), 6.17)]= 1/|R′|× (|R′|!× (|R|−|R′|)!)/|R|!×
g × (|R| − 1)!/(|R′ − 1|! × (|R| − |R′|)!) = g/|R| = freq(T|R). ��
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